Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/35000
Cómo citar
Título: | Topology of leaves for minimal laminations by non-simply-connected hyperbolic surfaces |
Autor: | Álvarez, Sebastien Brum, Joaquín |
Tipo: | Artículo |
Palabras clave: | Hyperbolic surface laminations, Topology of surfaces, Coverings of graphs |
Fecha de publicación: | 2022 |
Resumen: | We give the topological obstructions to be a leaf in a minimal lamination by hyperbolic surfaces whose generic leaf is homeomorphic to a Cantor tree. Then, we show that all allowed topological types can be simultaneously embedded in the same lamination. This result, together with results in [arXiv:1906.10029] and [Comment. Math. Helv. 78 (2003), 845–864], completes the panorama of understanding which topological surfaces can be leaves in minimal hyperbolic surface laminations when the topology of the generic leaf is given. In all cases, all possible topologies can be realized simultaneously. |
Editorial: | European Mathematical Society |
EN: | Groups Geometry and Dynamics, 2022, 16(1): 179–223 |
Financiadores: | ANII:FCE_3_2018_1_148740 |
Citación: | Álvarez, S y Brum, J. "Topology of leaves for minimal laminations by non-simply-connected hyperbolic surfaces". Groups Geometry and Dynamics [en línea] 2022 16(1): 179–223. 45 h. |
ISSN: | 1661-7215 |
Aparece en las colecciones: | Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia) Publicaciones académicas y científicas - Facultad de Ciencias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
10.4171_GGD_645.pdf | 3,89 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons