english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/34294 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorWonsever, Dina-
dc.contributor.advisorMinel, Jean-Luc-
dc.contributor.authorMoncecchi, Guillermo-
dc.date.accessioned2022-10-24T16:01:02Z-
dc.date.available2022-10-24T16:01:02Z-
dc.date.issued2013-
dc.identifier.citationMoncecchi, G. Recognizing speculative language in research texts [en línea] Tesis de Doctorado. Montevideo : Udelar. FI. INCO : PEDECIBA : Université Paris Ouest Nanterre La Défense, 2013.es
dc.identifier.issn1688-2776-
dc.identifier.urihttps://hdl.handle.net/20.500.12008/34294-
dc.description.abstractThis thesis studies the use of sequential supervised learning methods on two tasks related to the detection of hedging in scientific articles: those of hedge cue identification and hedge cue scope detection. Both tasks are addressed using a learning methodology that proposes the use of an iterative, error-based approach to improve classification performance, suggesting the incorporation of expert knowledge into the learning process through the use of knowledge rules. Results are promising: for the first task, we improved baseline results by 2.5 points in terms of F-score by incorporating cue cooccurence information, while for scope detection, the incorporation of syntax information and rules for syntax scope pruning allowed us to improve classification performance from an F-score of 0.712 to a final number of 0.835. Compared with state-of-the-art methods, the results are very competitive, suggesting that the approach to improving classifiers based only on the errors commited on a held out corpus could be successfully used in other, similar tasks. Additionaly, this thesis presents a class schema for representing sentence analysis in a unique structure, including the results of different linguistic analysis. This allows us to better manage the iterative process of classifier improvement, where different attribute sets for learning are used in each iteration. We also propose to store attributes in a relational model, instead of the traditional text-based structures, to facilitate learning data analysis and manipulation.es
dc.format.extent149 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.publisherUdelar.FIes
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.titleRecognizing speculative language in research textses
dc.typeTesis de doctoradoes
dc.contributor.filiacionMoncecchi Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería-
thesis.degree.grantorUniversidad de la República (Uruguay). Facultad de Ingenieríaes
thesis.degree.grantorUniversité Paris Ouest Nanterrees
thesis.degree.nameDoctor en Informáticaes
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
Aparece en las colecciones: Tesis de posgrado - Instituto de Computación

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
Mon13.pdfTesis de Doctorado2,58 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons