english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/34220 Cómo citar
Título: The bifurcation set as a topological invariant for one-dimensional dynamics
Autor: Fuhrmann, Gabriel
Gröger, Maik
Passeggi, Alejandro
Tipo: Artículo
Palabras clave: One-dimensional dynamics, Open systems, Topological invariants, Bifurcation set/locus
Fecha de publicación: 2021
Resumen: For a continuous map on the unit interval or circle, we define the bifurcation set to be the collection of those interval holes whose surviving set is sensitive to arbitrarily small changes of (some of) their endpoints. By assuming a global perspective and focusing on the geometric and topological properties of this collection rather than the surviving sets of individual holes, we obtain a novel topological invariant for one-dimensional dynamics. We provide a detailed description of this invariant in the realm of transitive maps and observe that it carries fundamental dynamical information. In particular, for transitive non-minimal piecewise monotone maps, the bifurcation set encodes the topological entropy and strongly depends on the behavior of the critical points.
Editorial: IOP
EN: Nonlinearity, 2021, 34(3): 1366–1388.
Citación: Fuhrmann, G, Gröger, M y Passeggi, A. "The bifurcation set as a topological invariant for one-dimensional dynamics". Nonlinearity. [en línea] 2021, 34(3): 1366–1388. 24 h. DOI: 10.1088/1361-6544/abb78c.
ISSN: 1361-6544
Aparece en las colecciones: Publicaciones académicas y científicas - Facultad de Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
10108813616544abb78c.pdf822,04 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons