Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/34220
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Fuhrmann, Gabriel | - |
dc.contributor.author | Gröger, Maik | - |
dc.contributor.author | Passeggi, Alejandro | - |
dc.date.accessioned | 2022-10-17T17:37:41Z | - |
dc.date.available | 2022-10-17T17:37:41Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Fuhrmann, G, Gröger, M y Passeggi, A. "The bifurcation set as a topological invariant for one-dimensional dynamics". Nonlinearity. [en línea] 2021, 34(3): 1366–1388. 24 h. DOI: 10.1088/1361-6544/abb78c. | es |
dc.identifier.issn | 1361-6544 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/34220 | - |
dc.description.abstract | For a continuous map on the unit interval or circle, we define the bifurcation set to be the collection of those interval holes whose surviving set is sensitive to arbitrarily small changes of (some of) their endpoints. By assuming a global perspective and focusing on the geometric and topological properties of this collection rather than the surviving sets of individual holes, we obtain a novel topological invariant for one-dimensional dynamics. We provide a detailed description of this invariant in the realm of transitive maps and observe that it carries fundamental dynamical information. In particular, for transitive non-minimal piecewise monotone maps, the bifurcation set encodes the topological entropy and strongly depends on the behavior of the critical points. | es |
dc.format.extent | 24 h | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.publisher | IOP | es |
dc.relation.ispartof | Nonlinearity, 2021, 34(3): 1366–1388. | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | One-dimensional dynamics | es |
dc.subject | Open systems | es |
dc.subject | Topological invariants | es |
dc.subject | Bifurcation set/locus | es |
dc.title | The bifurcation set as a topological invariant for one-dimensional dynamics | es |
dc.type | Artículo | es |
dc.contributor.filiacion | Fuhrmann Gabriel | - |
dc.contributor.filiacion | Gröger Maik | - |
dc.contributor.filiacion | Passeggi Alejandro, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática. | - |
dc.rights.licence | Licencia Creative Commons Atribución (CC - By 4.0) | es |
dc.identifier.doi | 10.1088/1361-6544/abb78c | - |
Aparece en las colecciones: | Publicaciones académicas y científicas - Facultad de Ciencias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
10108813616544abb78c.pdf | 822,04 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons