Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/34220
Cómo citar
Título: | The bifurcation set as a topological invariant for one-dimensional dynamics |
Autor: | Fuhrmann, Gabriel Gröger, Maik Passeggi, Alejandro |
Tipo: | Artículo |
Palabras clave: | One-dimensional dynamics, Open systems, Topological invariants, Bifurcation set/locus |
Fecha de publicación: | 2021 |
Resumen: | For a continuous map on the unit interval or circle, we define the bifurcation set to be the collection of those interval holes whose surviving set is sensitive to arbitrarily small changes of (some of) their endpoints. By assuming a global perspective and focusing on the geometric and topological properties of this collection rather than the surviving sets of individual holes, we obtain a novel topological invariant for one-dimensional dynamics. We provide a detailed description of this invariant in the realm of transitive maps and observe that it carries fundamental dynamical information. In particular, for transitive non-minimal piecewise monotone maps, the bifurcation set encodes the topological entropy and strongly depends on the behavior of the critical points. |
Editorial: | IOP |
EN: | Nonlinearity, 2021, 34(3): 1366–1388. |
Citación: | Fuhrmann, G, Gröger, M y Passeggi, A. "The bifurcation set as a topological invariant for one-dimensional dynamics". Nonlinearity. [en línea] 2021, 34(3): 1366–1388. 24 h. DOI: 10.1088/1361-6544/abb78c. |
ISSN: | 1361-6544 |
Aparece en las colecciones: | Publicaciones académicas y científicas - Facultad de Ciencias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
10108813616544abb78c.pdf | 822,04 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons