english Icono del idioma   español Icono del idioma  

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12008/33743 How cite
Title: Two examples of vanishing and squeezing in K₁
Authors: Ellis, Eugenia
Rodríguez Cirone, Emanuel
Tartaglia, Gisela
Vega, Santiago
Type: Artículo
Keywords: Assembly maps, Controlled topology, Bass-Heller-Swan theorem
Issue Date: 2020
Abstract: Controlled topology is one of the main tools for proving the isomorphism conjecture concerning the algebraic K-theory of group rings. In this article we dive into this machinery in two examples: when the group is infinite cyclic and when it is the infinite dihedral group in both cases with the family of finite subgroups. We prove a vanishing theorem and show how to explicitly squeeze the generators of these groups in K₁. For the infinite cyclic group, when taking coefficients in a regular ring, we get a squeezing result for every element of K₁; this follows from the well-known result of Bass, Heller and Swan.
Publisher: NYJM
IN: New York Journal of Mathematics, vol. 26, 2020, pp. 607-635.
Financiadores: ANII - FCE_3_2018_1_148588
e-ISSN: 1076-9803
Citation: Ellis, E., Rodríguez Cirone, E., Tartaglia, G. y otros. "Two examples of vanishing and squeezing in K₁". New York Journal of Mathematics. [en línea]. 2020, vol. 26, pp. 607-635.
License: Licencia Creative Commons Atribución (CC - By 4.0)
Appears in Collections:Publicaciones académicas y científicas - Facultad de Ingeniería

Files in This Item:
File Description SizeFormat  
ERTV20.pdfVersión publicada452,53 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons