english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/33460 Cómo citar
Título: Existence of common zeros for commuting vector fields on 3-manifolds II. Solving global difficulties
Autor: Álvarez, Sebastien
Bonatti, Christian
Santiago, Bruno
Tipo: Preprint
Palabras clave: Commuting vector fields, Fixed points, Poincaré-Hopf index
Fecha de publicación: 2020
Resumen: We address the following conjecture about the existence of common zeros for commuting vector fields in dimension 3: if are two commuting vector fields on a 3-manifold , and is a relatively compact open such that does not vanish on the boundary of and has a non-vanishing Poincaré–Hopf index in , then and have a common zero inside . We prove this conjecture when and are of class and every periodic orbit of along which and are collinear is partially hyperbolic. We also prove the conjecture, still in the setting, assuming that the flow leaves invariant a transverse plane field. These results shed new light on the case of the conjecture. This paper relies on colour figures. Some references to colour may not be meaningful in the printed version, and we refer the reader to the online version which includes the colour figures.
Descripción: Versión permitida: preprint. London Mathematics Society
Financiadores: ANII: FCE_1_2017_1_135352
Citación: Álvarez, S, Bonatti, C y Santiago, B. "Existence of common zeros for commuting vector fields on 3-manifolds II. Solving global difficulties" [Preprint]. Publicado en: Proceedings of the London Mathematical Society, 2020, 124(4): 828-875.DOI:10.1112/plms.12342
Aparece en las colecciones: Publicaciones académicas y científicas - Facultad de Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
10.1112plms.12342.pdf1,18 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons