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Existence of common zeros for commuting vector fields on
3-manifolds II. Solving global difficulties.
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Abstract

We address the following conjecture about the existence of common zeros for commuting
vector fields in dimension three: if X,Y are two C! commuting vector fields on a 3-manifold M,
and U is a relatively compact open such that X does not vanish on the boundary of U and has
a non vanishing Poincaré-Hopf index in U, then X and Y have a common zero inside U. We
prove this conjecture when X and Y are of class C? and every periodic orbit of Y along which X
and Y are collinear is partially hyperbolic. We also prove the conjecture, still in the C? setting,
assuming that the flow Y leaves invariant a transverse plane field. These results shed new light
on the C? case of the conjecture.
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1 Introduction

It is a challenging and open problem to determine when a smooth action of the abelian group R¥
on a given manifold M possesses a fixed point. Such an action is determined by the data of &
complete vector fields X', ..., X¥ on M that commute, i.e. [X?, X7] = 0 for every pair (i,7), where
[.,.] denotes the usual Lie bracket of vector fields. A fixed point for the R*-action is a common
zero of the corresponding vector fields X1, ..., X*.

When k = 1 the index theory developed by H. Poincaré and H. Hopf relates the topological
properties of M and the existence of fixed points. We shall define the so-called Poincaré-Hopf index
in Section 2. Such an index theory is not available for more general k.

The first relation between the topological properties of a manifold M and the existence of fixed
points for a given action of R* on M was obtained by E.L. Lima in 1964. In [9, 10], he proved that
an action of R¥ on a closed surface with non-zero Euler characteristic has necessarily a fized point.

The generalization of Lima’s theorem in dimension 3 faces an immediate difficulty: the Euler
characteristic of a 3-dimensional manifold always vanishes. The relevant topological properties of
M are no longer global, but rather semi-local: this is the content of the following conjecture. It was
addressed by the last two authors in [3], and was stated in [1] as a problem (Probléme 2 of that
reference). It concerns the case k = 2 and dim M = 3.

Conjecture — Let X,Y be two commuting vector fields of class C' on a 3-dimensional manifold
M and let U C M be a relatively compact open set such that Zero(X) N oU = (). Assume moreover
that the Poincaré-Hopf index of X in U does not vanish: Ind(X,U) # 0. Then X and Y have a

common zero inside U.



This conjecture was confirmed in the case X and Y are analytic by the second author in 1992
(see [1]). It remains widely open since then in the context of lower regularity. A door was recently
opened by the last two authors. In [3], they solved the conjecture when X and Y are of class C!,
but assuming that a natural dynamical object (the collinearity locus of the two vector fields) has a
special geometric property: see Theorem 1.1 for the precise statement.

The main intuition behind the conjecture is the following. If X and Y have no common zeros,
then, close to the compact set K = Zero(X) N U, the vector field X must commute with the non-
vanishing vector field Y. So either X is collinear to Y all along a Y;-orbit, or it is never so. This
should prevent X of turning in all directions, which would give Ind(X,U) = 0. Motivated by this
we intend to attack the conjecture under the following form.

Alternative form — Let X,Y be two commuting vector fields of class C* on a 3-dimensional
manifold M. Let U C M be a relatively compact open set such that Zero(X)NOU = Zero(Y)NU = (),
then Ind(X,U) = 0.

In order to see that the latter statement actually implies the conjecture, we use the following
property of Poincaré-Hopf index. If K CZero(X) is an isolated compact set, then Ind(X,U) is
independent of the isolating neighbourhood U of K (where one says that U is isolating if it is
relatively compact, if K = Zero(X)NU and if Zero(X) NoU = 0).

Now, assume that the Alternative Form has been established. Let X,Y be two C'-commuting
vector fields on a 3-dimensional manifold M. Assume that Ind(X,U) # 0, where U is a relatively
compact open subset of M, but K = Zero(X) N U is disjoint from Zero(Y'). Thus, we can choose a
smaller neighbourhood U; C U of K whose closure is disjoint from Zero(Y'). By the property stated
above, Ind(X,U;) = Ind(X,U), and by the Alternative Form, Ind(X,U;) = 0, which is impossible.

Main results — When we explained above our main intuition, it was implicit that the main
character of the paper is the collinearity locus

Coly(X,Y) = | Zero(X —¢Y)NT,
ceR

of X and Y inside U. If the collinearity locus is “too big” (for instance if it contains an open
neighbourhood of K) there is not enough space for X to turn and the index must vanish. If on
the contrary it is “too small” (for example if it is reduced to a periodic orbit of Y') then X can be
approached by non-vanishing vector fields (i.e. the vector fields X — ¢Y for |c¢| small) so it must
have zero index. When it is not too big nor too small, the key lies in the detailed analysis of the
dynamics of Y in the neighbourhood of Coly(X,Y"). In particular the existence of stable/unstable
sets for Y, which must be invariant by X since it commutes with Y, prevents X to turn around
in all directions. This idea was successfully implemented in the paper [3], where the following was
proven, by constructing stable sets for Y.

Theorem 1.1 (Bonatti-Santiago). Let M be a 3-dimensional manifold and X,Y be two commut-
ing vector fields of class C*. Let U be a relatively compact open set such that Zero(Y) NU =
Zero(X) N OU = 0. Assume that Coly(X,Y) is contained in a closed and boundaryless two-
dimensional submanifold of M. Then

Ind(X,U) = 0.

A special case of this result - but still an important step for the proof, and which we will use in
our paper - was to consider a pair X and Y for which the collinearity locus was an annulus foliated by



periodic orbits of Y such that these orbits have stable (or unstable) manifolds. In this case, the zero
set of X reduces to a single periodic orbit of Y, and U is a tubular neighbourhood of this periodic
orbit. The collinearity locus is not too big, but the stable manifolds, which comprise a surface
foliation to which X is tangent, leave no room for X to turn in all directions. See Theorem 5.24 for
a precise statement and Figure 13.

The aim of the present paper is to address global difficulties which may arise for an arbitrary con-
figuration of the collinearity locus, but still taking advantage of the existence of invariant manifolds
for periodic orbits.

Theorem A. Let X,Y be two commuting vector fields of class C® on a 3-dimensional manifold M
and let U C M be a relatively compact open set such that Zero(X)NOU = (). Assume moreover that
the properties below hold true

e Y does not vanish in U;

e if v C U is a periodic orbit of Y contained in the collinearity locus Coly(X,Y) then the
Poincaré map of v has at least one eigenvalue of modulus different from 1.

Then the Poincaré-Hopf index of X in U vanishes: Ind(X,U) = 0.

Theorem A combines the difficulties of two ideal cases. The first one is that of Theorem 1.1.
The second one is treated by our Theorem C (see Section 4). There we deal with a global dynamical
configuration in Coly(X,Y') and we need to introduce a new idea: a Glueing Lemma to glue stable
with unstable manifolds of heteroclinically connected Yi-periodic orbits included in Coly (X,Y) (see
Lemma 4.18). Non-trivial difficulties appear when trying to combine these two cases and we need
techniques from partially hyperbolic dynamics, such as the Center Manifold Theorem, to treat them.

On the other hand, we can also prove the conjecture, for C? vector fields, with no hypothesis on
the local dynamics, but imposing that the flow of vector field Y preserves a transverse plane field.

Theorem B. Let X,Y be two commuting vector fields of class C® on a 3-dimensional manifold M
and let U C M be a relatively compact open set such that Zero(X)NOU = (). Assume moreover that

e Y does not vanish in U;
e the flow of Y leaves invariant a C3-plane field in U transverse to Y .
Then the Poincaré-Hopf index of X in U vanishes: Ind(X,U) = 0.

The proof of this theorem provides a clear illustration of our intuition: if X commutes with the
non-singular vector field Y, it cannot turn in all directions. As an easy consequence of the above
result we obtain

Corollary 1.2. Let ¥ be a compact and boundaryless surface of class C°, and f € Diff3(X). Let
M be the suspended manifold and Y be the suspended flow on M.

Assume that there exists a vector field X on M which is of class C® and commutes with Y.
Then for every isolated compact set K C Zero(X) we have Ind(X, K) = 0.

Remark 1.3. One can easily check from the proof of Theorem B that Corollary 1.2 is in fact true
when f is of class C2.

Remark 1.4. Corollary 1.2 gives a natural class of examples to “test” the conjecture. One might
think that it is too simple to study the topological behaviour of a vector field invariant under a
suspension flow. Nevertheless, our proof is quite delicate and we are not aware of a direct argument
to prove Corollary 1.2.



Overview of the article — In Section 2 we show how to use the C3-hypothesis to perform a
reduction in the proof of the Conjecture, showing that if there exists a counterexample to the C3
alternative form then there exists special counter-examples, that we call prepared. The goal of this
reduction is to produce a foliation of U by surfaces to which Y is almost tangent. Then, projecting
down Y on these surfaces, we shall benefit from arguments of surface dynamics. This will allow us
to describe the dynamical and geometrical structure of the collinearity locus.

The end of the section is devoted to a discussion of the ideas of our proofs and in the remaining
sections we prove our theorems by contradiction, assuming the existence of a prepared counter-
example.

In Section 3 we prove Theorem B. The main feature of this case is that by our construction of
prepared counterexamples, the vector field Y preserves the leaves of the foliation. We show how
the dynamics of Y on the leaves prevents X from turning.

In Section 4 we prove Theorem C, which is the main step towards the proof of Theorem A,
where we introduce one of our main ideas: the Glueing Lemma. In Section 5 we prove Theorem A.

Section 6 is the conclusion. There we give the details of a strategy to treat the general C3-case
of the conjecture. We hope to explain there how far we are from an answer to the general case.

2 Prepared triples

This section is devoted to the reduction of the proof of the conjecture, in its Alternative Form, to
the treatment of special vector fields, which we call prepared. For these vector fields the collinearity
locus enjoys nice geometrical properties. For such prepared vector fields X, Y, we establish a simple
formula to compute the index Ind(X,U). In the final paragraph we give the ideas of proofs of our
main results.

2.1 The Poincaré-Hopf index

Let M be a smooth manifold of dimension d and X be a C" vector field on M, r > 1. The set of
zeros of X shall be denoted by Zero(X).

Index at an isolated zero — Let x € M and ¢ : U C M — R? be a local coordinate around z.
Assume that x is an isolated zero of X, i.e. that there exists a ball B C U centred at x such that x
is the only zero of X in B. In particular X does not vanish on OB and the following Gauss map is
well defined (the norm |[|.|| is chosen to be Euclidean in the coordinates given by ¢)

a: OB — 841
Yy

By definition the Poincaré-Hopf index of X at x is the topological degree of the Gauss map «.
It is independent of the choice of a ball B and shall be denoted by Ind(X, z).

Index in an open set — Now assume that X does not vanish on the boundary 9U of a relatively
compact open set U.

If X’ is a vector field close to X in the C%-topology, then X’ does not vanish on OU. Moreover
one can choose X’ so that it has only a finite number of zeros inside U. The Poincaré-Hopf index
of X in U is the integer



Ind(X,U)= >  Ind(X',2).
x€Zero(X')NU

This number is independent of the choice of such an X', and we have Ind(X’,U) = Ind(X,U)
whenever X and X’ are close enough in the C%topology. In particular, we have the following:

Lemma 2.1. Let X,Y be two vector fields on M of class C". There exists 6 > 0 such that if
Zero(X —cY)NU =0 for some |c| < § then Ind(X,U) = 0.

Assume that QU is a codimension 1 submanifold of M on which X does not vanish and
that there is a continuous map associating to every x € U a basis of T,M denoted by B(z) =
(e1(), ea(x), ...,eq(z)). This provides U with an orientation, and allows one to define the Gauss
map of X in OU. One can prove that Ind(X, U) is the topological degree of the Gauss map defined
in U, which is independent of the choice of the neighbourhood U and of the basis S.

Index at an isolated compact set — A compact set K C Zero(X) is said to be isolated if there
exists a neighbourhood U of K, called isolating neighbourhood, such that Zero(X)NU = K and
Zero(X) NoU = 0.

The integer Ind(X, U) is independent of the isolating neighbourhood U and shall be denoted by
Ind(X, K). It shall be called the Poincaré-Hopf index at K.

Remark 2.2. Note that the index is additive: if K; C Zero(X), for i = 1,...,n are disjoint isolated
compact sets, then Ind(X, U 1 K;) = > i Ind(X, K;).

2.2 General dynamical notions for vector fields

Let us recall some basic dynamical concepts and fix accordingly some notations that we shall use
throughout the paper.

In the following, given a C! vector field over M we denote by X; the flow it generates. For any
x € M and any interval I C R, we also let X;(x) := {X;(z) : t € I'}. In particular, we denote by
O(z) := Xr(z) the orbit of the point x under X.

Given x € M, we consider its w-limit set w(x) = {y € M;3 t,, — +00; Xy, () — y}. One defines
similarly the a-limit set of x by replacing 400 with —oco. Whenever clarity is required we write
Ox(z),ax(x) and wx(x) to refer to the appropriate vector field. We say that a compact set K C M
is a minimal set for X if X;(K) = K, for every ¢t and « € K implies w(z) = K. The classification of
minimal sets for smooth surface vector fields of Denjoy and Schwartz [4, 15] will be a fundamental
tool for us.

A point z € M is periodic if there exists T > 0 such that X7(x) = x. In this case, we refer to
the orbit of x as being a periodic orbit.

If v = O(z) is a periodic orbit we consider its stable set W*(vy) = {y € M;w(y) = v}. We also
consider the unstable set W¥(v) = {y € M;a(y) = v}. Observe some of these sets can be empty
for a given periodic orbit. If W#(v) contains a neighbourhood of v we say that v is a sink. If it is
W () instead we say that v is a source.

2.3 Basic properties of commuting vector fields

Commuting vector fields — One says that the two vector fields X and Y commute if their Lie
bracket vanishes everywhere, i.e. [X,Y] =0.



When X and Y are complete (for example when M is compact), this is equivalent to the following
equality holding true for every s,t € R

XioYs =Ys0X;.

Until the end of this article all vector fields are complete.

Normal component, quotient function — Let X and Y be two commuting vector fields of
class C", r > 1 on a manifold M. Suppose U C M is a relatively compact open set where Y does
not vanish. Let II be a C" plane field in U transverse to Y. We can write

X=N+puY

where N is a C"-vector field tangent to II, called the normal component of X and pu: U =R is a
real function of class C”, called the quotient function.

Remark 2.3. These objects (normal component and quotient function) are not canonical.  For
example the choice of any Riemannian metric yields a plane field II transverse to Y (the orthogonal
plane field) and therefore yields a normal component and a quotient function. Even if they are not
canonical, they are important tools in the reduction we shall perform in this section. Whenever
we need to modify our choice of the plane field II so that IV and p have some desired property we
shall do so and state it accordingly. In particular, in the proof of Theorem B, we shall consider the
plane field which is invariant under the flow of Y, given by the assumption of that theorem, and
we shall explore what this additional property gives about the associated normal component N and
quotient functions pu.

Moreover, the fact that we have some freedom to choose these auxiliary objects is a subtle
technical detail of our arguments that we would like to emphasise. Indeed, observe that for every
¢ € R one has

Zero(X —cY)NU C p'(c) and Zero(N) = U Zero(X —cY)NU,
ceR

and that these facts hold for every choice of normal component and quotient function, whenever

both sides make sense. Thus, for instance, if we deduce a dynamical result about the sets Zero(X —
cY) (which are the 1 dimensional orbits of the R? action induced by X and Y) we can change
the function p but the dynamical property remains true. In the same spirit, the set of zeros of a
normal component does not depend on a particular choice. This simple observations will be used
throughout the paper.

The collinearity locus — The collinearity locus plays a fundamental role in our strategy. In all
the paper, we will use the following notation
K =Zero(X)NU # 0. (1)
The collinearity locus is defined inside U as

Coly(X,Y) = U Zero(X —cY)NU.
ceR

Since X and Y commute, the sets
K. =Zero(X —cY)NU (2)

are Yi-invariant, and form a partition of the collinearity locus by orbits of Y;.



Level sets — The study of the partition of U given by level sets u~!(c) will be crucial in the
paper. In particular, part of our simplification will consist in coming down to the case where it is a
foliation by surfaces, which will allow us to reduce the dimension, and use arguments from surface
dynamics. Note that, as was already mentioned in Remark 2.3, for every parameter ¢ we have

K.cu ().

The normal component and quotient function depend on a transverse plane field II in particular
there is no reason why Y should leave them invariant. The next paragraph gives a precise analysis
of this defect of invariance.

Holonomies — Let X, CU be two cross sections of Y tangent to II at xy and 1, such that
there exists a holonomy map P : ¥y — 31 along Y with P(zg) = ;.
The hitting time is the function 7 : X9 —(0, 00) defined by

P(x) = Yr()(2). (3)

The next lemma states two fundamental consequences of the identity [X,Y] = 0. The first
one is the invariance of the normal component by holonomy. The second one relates the defect of
invariance of p with the variation of the hitting time. The proofs can be found in [3, Corollary 5.6,
Lemma 5.7] as well as in the third author’s PhD thesis (see [13])

Lemma 2.4. Assume that X andY commute. Let ¥, X1 be two transverse sections of Y such that
there exists a holonomy map P : Xy — X1. Assume that Xy and X1 are tangent to 11 at x and P(x)
respectively. Then

1. D,P N(z) = N(P(z));
2. =Dy N(z) = p(P(2)) — p().

2.4 Prepared triples

Simplification of triples — Consider a C"-triple (U, X,Y) (with » > 1). It is the data of
U, a relatively compact open set of a 3-dimensional Riemannian manifold M, and of X,Y, two
commuting vector fields of class C" satisfying

Zero(Y)NU = Zero(X) NoU = 0.

Let II be a plane field transverse to Y. Consider the normal component N and the quotient
function p of X so the following equality holds in U

X =N+puY.
Such a triple is a counterezample to the Conjecture if we have
Ind(X,U) # 0.

Our goal now is, assuming the existence of a counterexample to the conjecture, to show that there
exists a counterexample to the conjecture having some additional properties which will give us a
more detailed description of the collinearity locus. The properties we are seeking are summarized
in the definition below.



Definition 2.5 (Prepared triples). Let (U, X,Y") be a C"-triple, and N, i be respectively the normal
component and the quotient function. We say that (U, X,Y) is a (C")-prepared triple if

1. U is trivially foliated by level sets u=1(c), ¢ € [—¢,¢], which are diffeomorphic to the same
compact and connected surface S, possibly with boundary.

2. Y is nowhere orthogonal to the level sets u~!(c).
3. 0 is a continuity point of the map Z : ¢ — K. = Zero(X — c¢Y)NU in the Hausdorff topology.
4. For every c € [—¢,¢], K.Nop~t(c) =0

We say that a C"-triple (U, X,Y") is a C"-prepared counterexample to the conjecture if this is a
prepared triple satisfying
Ind(X,U) # 0.

Since this definition is somewhat technical, let us give an informal explanation of what it means.
If (U, X,Y) is a C"-prepared counterexample then the level sets ;~!(c) of the quotient function
are compact surfaces almost tangent to Y, which trivially foliate U. Moreover, the “level ¢ of the
collinearity locus”, i.e. the compact set K. = Zero(X — cY) N U, is included in the level u~!(c)
and does not touch its boundary. This means that the partition of Coly(X,Y) by sets K. can
be extended to a foliation of U by surfaces. One important issue is Item 3, which concerns the
dependence of the sets K. with respect to ¢. Although in general it will not be continuous, for a
prepared counterexample, Item 3 provides some control on the configuration of K. for c¢ close to
0. In particular, all K, for ¢ close to 0 must be included in a “tubular” neighbourhood of K. The
simplest yet non trivial image to have in mind is depicted below in Figure 1.

The main reason to consider prepared triples is that we can project Y orthogonally to the level
sets of the quotient function. The dynamics of this projected vector field will allow us to give a very
precise dynamical description of the sets K. (see § 2.5 below).

Remark 2.6. The last item in the definition above is of course empty if level sets of p are bound-
aryless. We will show in Corollary 2.26 that there is no prepared counterexample satisfying that
level sets are boundaryless.

Prepared counterexamples — The first step of our strategy is, assuming that there is a coun-
terexample to the Conjecture, to construct a prepared counterexample. The remainder (and also
the majority) of the work will then consist in proving that such a prepared counterexample does
not exist.

Theorem 2.7 (Simplification of counterexamples). Assume the existence of a C3-counterexample
(U, X,Y) to the Conjecture. Then there exists U CU and a C3-vector field X commuting with Y
such that N N

Col5(X,Y) = Coly(X,Y)NU

and (17, )Z', Y) is a C3-prepared counterexample to the conjecture.

Remark 2.8. Tt will become clear in the next paragraphs that the C3-hypothesis made in Theorem
2.7 is fundamental.

Remark 2.9. In the theorem above we modify the open set U and the vector field X (in the direction
of Y') but we keep Y and the collinearity locus unchanged. Hence if we assume the existence of a
counterexample to the conjecture, adding some additional hypothesis on Y or on Coly (X,Y), then
there exists a prepared counterexample satisfying the same hypothesis. In particular, if there exists
a counterexample to Theorem A or B, then there exists a prepared counterexample to that theorem.



Orientability issues — We show below how to get down to the case where our prepared coun-
terexamples, if they exist, may be chosen with good orientability properties.

Proposition 2.10. Let (U, X,Y') be a prepared counterevample to Theorem A (resp. Theorem B).
Then there exists a prepared counterezample (U, X,Y) to that theorem such that

1. The vector field Y is transversally oriented.
2. Level sets i~ (c) are oriented, where i denotes the quotient function.

Proof. Take II : U — U, a double cover. The lifted vector fields X and Y still commute and the
index of X in U is multiplied by 2.

Let € Per(Y). Every & € II"'(z) is a periodic point of Y. Let P and P denote the cor-
responding Poincaré maps. Then the eigenvalues of DEIB coincide with those of D, P (if its orbit
projects down 1 : 1) or with their squares (if it projects down 2 : 1). Moreover the pull-back of a
Y;-invariant plane field, if it exists, is a Y-invariant plane field.

Therefore, if needed, we can consider successively a double orientation cover for Y+ and a double
orientation cover for the foliation by level sets. O

2.5 Simplifying Zero(X)

From now on (X, Y, U) will be a triple in the sense of §2.4. As we have already mentioned Coly (X,Y)
is partitioned by sets K. which are saturated by Y; and form therefore a lamination. The first idea
is to modify X without changing Ind(X, U) so that this lamination may be extended to a foliation
of U by surfaces (possibly with boundary). For this we will use Sard’s theorem.

A foliation containing Coly(X,Y) — Here, we must assume that X and Y are of class C3.
Endow M with a Riemannian metric g and let IT be the C? plane field normal to Y (or use any
plane field transverse to Y given a priori). We write

X =N+puY

where N is the normal component corresponding to IT and y : U — R is the corresponding quotient
function. These objects are of class C3.

Lemma 2.11. There exists § > 0 such that if u~1(c) =0, for some |c| < &, then Ind(X,U) = 0

Proof. Apply Lemma 2.1 to X in order to find the number § > 0. The result now follows from the
inclusion K. = Zero(X —cY)NU C p~(c). O

In particular we may rule out the case where p is constant in some neighbourhood of K.

Lemma 2.12. For every gy > 0 there exists 0 < g1 < g9 < g9 such that [e1,e2] is an interval
containing only reqular values of p.

Proof. Consider the function p : U — R. This is a function of class C® between a 3-dimensional
manifold and a 1-dimensional one, which by assumption vanishes in U and is not constant on U,
after Lemma 2.11. By Sard’s theorem there exist regular values, which can be made positive (up to
changing X by —X which still commutes with Y and doesn’t vanish on OU) and arbitrarily small.
Since U is compact, the set of regular values is an open set, the lemma follows. ]
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Figure 1: The collinearity locus is tangent to a surface foliation

Corollary 2.13. There exist 0 < & < &, such that the following properties hold true:
1. Zero(X —&Y)NOU = 0;
2. Ind(X —¢Y,U) = Ind(X,U);

3. [€ — &,& + €] contains only regular values of p. In particular, each connected component of
p L ([€ —e,E4€]) is diffeomorphic to a product [€ —e,€& +¢] x S, where S is a compact surface,
possibly with boundary.

Proof. The index of vector fields in U being locally constant there exists g > 0 such that the first
two properties hold for every & € [0,g9]. Using Lemma 2.12, one obtains that [0, ] contains an
interval [e1,e2] of regular values. Moreover, by Lemma 2.11 if gy is small enough, p is surjective
on this interval. We take £ = (g1 + £2)/2 and ¢ = (g1 — £2)/2. It follows that p~!([e1,¢e2]) is
diffeomorphic to a finite union of the form U;[e1, e2] x S;, where each S; is a connected component
of n~1(¢) and is a compact surface, which might have boundary components. O

Note moreover that X(!) = X — €Y commutes with Y. Hence if (U, X,Y) was a counterexample,
and UM = (e, e9) U then (UM, XM Y) is still a counterexample. Note that we did not
change Y nor Coly(X,Y).

For that reason we may assume that the number £ we just found out is in fact equal to 0 and
that U = p~'(e,e) is trivially foliated by level sets p=1(c).

Let Uy, ...,U, be the connected components of U. Fach U; is foliated by connected compact
surfaces, which are the connected components of level sets u~!(c). The additive property of the
index implies Ind(X,U) = > ; Ind(X, U;). So if (U, X,Y’) is a counterexample, there exists ¢ such
that (U;, X,Y) is a counterexample satisfying the first item of Definition 2.5, i.e. we are down to

the case where U is trivially foliated by compact and connected surfaces, the level sets p~'(c), such
that for every ¢, K. = Zero(X — cY)NU C p~(c).

Projecting Y on level sets — As we mentioned before Y needs not be tangent to level sets.
However we saw that Coly (X,Y) is saturated by the orbits of Y. So a continuity argument shows
that in a neighbourhood of Coly(X,Y), Y is quasi-tangent to the level sets.
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Lemma 2.14. There exists W C U, a neighbourhood of Coly(X,Y)), such that for every c € (—¢,¢)
ifx € WNut(e) then

<Y (@), Tl ()| <

NS

Proof. Since [X,Y] = 0 the collinearity locus Coly(X,Y) is Yi-invariant. We deduce that Y is
tangent to u~!(c) at every point of K.. The lemma clearly follows from the continuity of the vector
field. O

Such a neighbourhood of Coly(X,Y") is a neighbourhood of K and X does not vanish on its
boundary. This allow us to construct from a counterexample (U, X,Y’) such as constructed in the
previous paragraph a new counterexample (U @, x@, Y') satisfying the first and the second item
of Definition 2.5. Here again, we did not change Y nor the collinearity locus.

2.6 Semi-continuity for the Hausdorff topology

We will also need a genericity argument to reduce our study to the case where 0 is a continuity
point of Z : ¢ — K. = Zero(X — c¢Y) N U for the so-called Hausdorff topology that we introduce
below.

Definition and semi-continuity lemma — Recall that the set K of compact subsets of a com-
pact metric space (X, dist) is in itself a compact metric space when endowed with the Hausdor(f
distance disty defined as follows. If K, L are compact subsets of X, disty (K, L) is the maximum
of the two numbers distx (L) and distz,(K) where by definition

dist g (L) = sup dist(z, K).
zeL
Definition 2.15 (Lower semi-continuity). Let (), d) be a metric space. Say a function Z : Y — K

is lower semi-continuous at yo € ) if for every open set V C X intersecting Z(yp) there exists § > 0
such that if y € ) satisfies d(yp,y) < d, then

Z(y) NV #0.

Definition 2.16 (Upper semi-continuity). Let (), d) be a metric space. Say a function Z : Y — K
is upper semi-continuous at yo € ) if for every neighbourhood V C X of Z(yp) there exists 6 > 0
such that if y € ) satisfies d(yp,y) < d, then

Z(y)CV.

Note that this notion is coherent: a function Z : Y — K which is both lower and upper semi-
continuous at a point is continuous at this point (with respect to the Hausdorff distance). For the
next result, we refer to [8, pp. 70-71]. See also [14], which is an unpublished note of the third
author, for a proof in a slightly more general context (i.e. assuming only the separability of )).
Recall that a subset of a topological space is called residual if it can be written as a countable
intersection of dense open sets.

Theorem 2.17 (Semi-continuity Lemma). Let (X, dist) and (), d) be two compact metric spaces,
and K be the space of compact subsets of X endowed with the Hausdorff distance. Let Z : Y — K be
upper (resp. lower) semi-continuous at all points y € Y. Then the set of continuity points of Z is
residual, and hence dense by Baire’s theorem.
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Regularity of Zero(X —cY) — Let us study how the compact set consisting of elements z € U C M
such that X (z) = ¢Y (x) varies with the parameter c.

Lemma 2.18. The map

Z:ceR— K.=Zero(X —cY)NU

s upper semi-continuous in the Hausdorff topology.

Proof. Let ¢ € (—¢,e) and ¢, € (—¢,e) be a sequence converging to c¢. Consider a sequence
Ty € Z(cyp), in such a way that X (z,,) = ¢, Y (z,,). Any accumulation point x of z,, must belong to
U and satisfy X (z) = ¢Y (z) and so, must belong to Z(c).

Now, assume by contradiction that Z is not upper semi-continuous at ¢ € (—¢,¢). Then, there
exists V' a neighbourhood of Z(¢) and (¢, )neN, a sequence converging to ¢, such that there exists
a sequence of points z,, € Z(c,,) \ V. However, since all accumulation points of z,, must belong to
Z(c), we have x,, € V for n large enough, which is absurd. O

Corollary 2.19. The set of continuity points of Z is a residual subset of some interval in R.

Remark 2.20. For every compact subset F'C U the function ¢ € R +— Zero(X — ¢Y) N F is upper

semi-continuous and the set of its continuity points is residual inside R. This map will always be
denoted by Z.

As we shall see, the continuity properties of the function Z have some important dynamical
consequences. Let us state right now a simple one.

Lemma 2.21 (No sinks/sources). Let X,Y be two commuting vector fields. Assume that there
exists a periodic orbit for' Y, included in Zero(X — c¢Y) N U, which is a sink or a source. Then c is
a discontinuity point of Z. As a consequence, the set of ¢ € R such that Zero(X —cY )N U does not
contain such a sink or source is residual.

Proof. Suppose there exists (say) a sink 7 of Y contained in K, = Zero(X — ¢Y') N U, for some
c € R. Let U CU be a neighbourhood of v contained in W5-(y). In particular, for every x € U we
have wy (x) = 7.

Supppose the existence of z € Zero(X — Y) NU. On the one hand we have wy(z) =
v CZero(X — ¢Y). On the other hand Zero(X — YY) is Yi-invariant since X and Y commute,
so we have wy (z) C Zero(X — c'Y). Since Y does not vanish in & C U we have Zero(X — c¢Y) N
Zero(X —Y)NU = () unless ¢ = .

We deduce that there is no ¢ # ¢ satisfying Zero(X — ¢'Y) NU # (). This implies that Z is not
lower semi-continuous at c¢. This proves the first part of the lemma.

Since continuity points of Z are residual, the second part of the lemma follows. ]

Construction of prepared counterexamples — We are now in position to prove Theorem 2.7.
Given a C3-counterexample, we know how to construct a counterexample (U, X,Y) satisfying the
first two properties of Definition 2.5 without modifying Y nor the collinearity locus.

Corollary 2.19 says that continuity points of Z are dense in (—&,¢). Hence we can perform, as
we have already done in §2.5, a small modification of X in the direction of Y without changing the
index, Y or the collinearity locus, so that 0 is a continuity point. Shrinking U we obtain a new
counterexample (U®), X®)|Y) satisfying the first three properties of the definition.

Now we just have to see how to deduce the fourth property from the others. This is a continuity
argument. Since Z is upper semi-continuous at 0 and since K = Z(0) is disjoint from OU we must
have Z(¢) N AU = () for |¢| smaller than some positive number ¢’. Let U denote p~!(—¢’,¢’) and
X = X®). The triple (U, X,Y) is a prepared counterexample and Theorem 2.7 is proven.
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2.7 An index formula

We will now prove a general index formula which simplifies the computation of Ind(X,U) for
prepared triples. It generalizes a formula which was used in [3] in a crucial way (see [3, Proposition
5.9]).

We assume that (U, X,Y) is a prepared triple (see Definition 2.5). Let us use coordinates
x = (z,c) € S x [—¢,¢€] to describe a point of U, S being a connected compact surface possibly with
boundary. We will also require the vector field Y to be transversally oriented and S to be oriented
in U (up to multiplying Ind(X,U) by an integer: see the proof of Proposition 2.10).

The second item of Definition 2.5 implies that Y is never orthogonal to the surface S x {c}.
Note that Zero(N) = Coly(X,Y’) so our last reduction implies

Zero(N) N (0S8 x [—e,€]) = 0. (4)
In coordinates x = (x,¢) one can write
X(x) = N(x) + ¢Y (x).
Choice of a basis — We will set e3 = Y. The vector field e3 is never orthogonal to S. Using
the orientation of the surface implies that there exists a vector field es tangent to S which is

orthogonal to Y. Finally define e; = es A e3. This define a continuous basis x = (z,¢) — [(x) =
(e1(x), e2(x), e3(x)) of TxU. Since (e1,ez) is a basis of Y+ we may write

X(x) = ai(x)e1(x) + ag(x)ea(x) + cez(x), N(x) = ag(x)er(x) + az(x)ez(x).
Consider the Gauss maps in U given by

o oU — 82

X = (x7 C) — (o (x),02(x),¢)

Vo ()2 +az (x) 242

and, recalling that N # 0 on 95 x {0},

v: 0Sx{0} — S!

_ (e1(x)on(x))
X = (.%', 0) — al(x)2+a2(x)2

Here we see the oriented circle S' embedded in S? as the equator {¢ = 0} oriented as the boundary
of the northern hemisphere {c¢ > 0}.

Remark 2.22. Note that with our choice of coordinates, the vector fields ey, e; and e3 are at least
C' so the Gauss map « itself is C1. This makes the computation of deg(c) easier.

The index formula — Let v be a connected component of 0S oriented with the boundary
orientation.

Definition 2.23 (Linking number). The topological degree of the restriction of v to « is called the
linking number of N along . We denote it by (7).

The principal theorem of this section is

13



Zero(N) = Coly(X,Y)
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Figure 2: Case where S is an annulus. Here 0S is a disjoint union of two curves 4 and «y_, oriented
with the boundary orientation. The formula becomes Ind(X,U) = I(y1) + I(y-).

Theorem 2.24 (The Index Formula).
nd(X,U) = ¥ i)

v

where the sum is taken on all the boundary components v of S, oriented with the boundary orien-
tation.

Remark 2.25. In [3, Proposition 5.9] the authors prove this formula when S is an annulus (see figure
2). The presentation of the proof we give here simplifies the one given in that reference.

Proof of Theorem 2.24. We decompose the boundary of U as

oU = (U CW> US.uUsS_.,
Y

where the union is taken on all boundary components of S and where we have set C., = v x [—¢, €]
and Sy, = S x {#e}. These surfaces have disjoint interiors and if two of them have nonempty
intersection, it must be one of the v x {£e} where 7 is a boundary component of S. We claim that

deg(a) = Y _deg(alc,) +deg(als,) +deg (als_.) - (5)
¥

Recall that o is C! (see Remark 2.22) so deg(a) can be computed as the number of preimages
of any regular value of o counted with multiplicity: [11, Chapter 5]. Note also that there exists
a regular value of o without a preimage in U, v x {ze}. This uses Sard’s theorem, and the fact
that a(UJ, v x {£¢}) has zero Lebesgue measure (recall that the image of a compact 1-dimensional
manifold by a C' map between two surfaces has zero Lebesgue measure). So its preimages are in
LI, Int(C,) U Int(S:) U Int(S-.). Using the definition of degree given above and this regular value
we deduce that Formula (5) holds.

The Gauss map « sends S. and S_. inside the northern and southern hemisphere respectively
(this is because u > 0 on S; and u < 0 on S_.). In particular its topological degree is zero in
restriction to these surfaces.

Now let us choose a component v and compute deg(a|cw). Let us consider

_ (a1(z, (1 = s)c),as(z, (1 — s)c), (1 — s)c)
Vai(z, (1 —35)e)? + az(z, (1 —s)c)? + (1 — 5)2c%

as(z, c)
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We use here that N does not vanish on C, C(0S x [—¢,¢]. This defines a retraction of o to v. We
deduce that

deg (O‘|7><(—e,e)) = l(r)/)
This ends the proof. O

Corollary 2.26. With the previous hypotheses, assume that S is a boundaryless surface. Then

Ind(X,U) = 0.

2.8 Dynamics of the projected vector field

Let (U, X,Y) be a C3-prepared counterexample. It will be very useful to define a new non-vanishing
vector field of U, denoted by Y’, which is tangent to the level sets by setting

Y'(x) = projy, -1 (Y (2)),

Projr,[u-1(c) denoting the orthogonal projection on Ty, =t (c)].

Remark 2.27. Since at each point of Coly(X,Y), Y is tangent to the corresponding level set, we
have Y =Y’ on Coly(X,Y).

The vector field Y is of class C* on level sets p~'(c). Introducing the vector field Y’ has the
following interest. The dynamics of a non-vanishing vector field of class C", r > 2, on a surface
is rather simple thanks to the Denjoy-Schwartz theorem, which we shall use here in the following
version (see the Corollary in page 457 of [15])

Theorem 2.28 (Denjoy-Schwartz [4, 15]). Let S be an oriented surface and V a C? non-vanishing
vector field on S. Assume that S is not a minimal set for V. Then, for every x € S its w and
a-limit sets are periodic orbits.

The main consequence of this result for us is collected below. Recall our notation for K =
Zero(X)NU C u=1(0).

Lemma 2.29. Let (U, X,Y) be a C3-prepared triple. There exists a C3-prepared triple (ﬁ,X,Y)
with U CU (we denote by [ the restriction of p to U) such that the following dichotomy holds true

1. either K = i~1(0), in which case fi=*(0) is boundaryless;
2. or O 1(0) # 0 and for every x € K, ay (x) and wy (x) are periodic orbits of Y.

Proof. Let us consider the dynamics of the non-vanishing vector field Y’ on the surface p=1(0).
Distinguish two cases.

Case 1. K = p~1(0). Since (U, X,Y) is prepared we have K N du~1(0) = 0 (see Item 4. of
Definition 2.3) so and du~1(0) = 0.

Case 2. K C p~%(0). Since K is closed and invariant, 4 ~'(0) is not a minimal set of Y'|1(0)-
In particular Theorem 2.28 implies that that for every x € K, ay () = ay/(z) and wy () = wy ()
are periodic orbits of Y/ and Y (note that Y’ = Y when restricted to K). A priori u~1(0) could
be boundaryless (if it has boundary we are done). In that case, since K is strictly contained in the
level set, we can take a small neighbourhood W of K inside p~1(0) (with boundary) and consider
U=W x [—e,e] CU. Since W # (), by Theorem 2.28, Item 2 is satisfied as well as the conditions
of Definition 2.5. This ends the proof. O
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Remark 2.30. In the first case we know by Corollary 2.26 that Ind(X,U) must be zero. So if there
is a prepared counterexample, we are placed in the second case of Lemma 2.29. By continuity of
the foliation by levels, we know that ' (c) # () for every ¢ small and applying Theorem 2.28 once
more, and arguing identically as in the proof above, we deduce that the sets K. consist of orbits
whose a and w-limit sets are periodic orbits. This simplifies the structure of the collinearity locus.

2.9 Strategies of proof of the main results

Strategy of the proof of Theorem B — If there exists a counterexample to Theorem B, we
have seen that there exists also a prepared counterexample. The first step is to show that, when we
consider the normal component N and quotient function p associated to the transverse invariant
plane field, given by assumption, then the level sets of the quotient function are invariant under
the flow of Y (see item (2) of Lemma 3.1). This implies that Y is tangent to the level sets of p.
After that, the main idea is to perform a suitable modification of the isolating neighbourhood so
that we can compute the linking numbers of N along curves which are included in the union of
finitely many paths which are either periodic orbits of Y or contained in the stable/unstable sets of
periodic orbits of Y included in K. This is achieved in the Key Lemma 3.3.

Then, the effective implementation of this idea uses in a crucial way the fact that Y is tangent
to level sets of . Indeed, to prove that all the linking numbers vanish, the important step is to
show that the C? function which measures the derivative of 4 along the normal direction N is
Yi-invariant (which is proven in Lemma 3.2). This will imply that along one boundary component
(with the above dynamical property) the vector field N is either tangent to the level set or it is
never tangent. Using a basis containing a vector field tangent to the level set, one then deduces
that the corresponding linking number vanishes (see Lemma 3.4).

Strategy of the proof of Theorem A — The proof of Theorem A is much more involved, it
will occupy both sections 4 and 5. As in the previous theorem, we assume by contradiction the
existence of a prepared counterexample to Theorem A. Since our isolated compact set K of zeros is
formed by periodic orbits of Y and heteroclinic connections between them, we can distinguish two
types of periodic orbits in the level 0. Those that are the alpha/omega limit set of an element in
K, which we call linked periodic orbits, and those that are not, which we call non-linked periodic
orbits.

We show that every linked periodic orbit has a stable (or unstable) manifold which is tangent to
the level set (which is done in Proposition 5.1) and that we can decompose K in a disjoint union into
compact sets K,,s UKy, where K, is formed by finitely many linked periodic orbits and heteroclinic
connections, while K, is the union of non-linked periodic orbits. Using the additivity of Poincaré-
Hopf index, we deduce that we are reduced to show that Ind(X, K,s) = Ind(X, K,;;) = 0. A key
role in the proof of this decomposition is played by the fact (Lemma 5.11) that there is only a finite
number of linked periodic orbits.

To show that Ind(X, K,;) = 0 we further decompose the set K,,; according to the position of the
stable/unstable manifolds of the periodic orbits, proving (in Lemma 5.18) that K,; = KZ} L Kﬂb-l,
where Kgl is a finite union of periodic orbits having a stable/unstable manifold tangent to the level
set while K #l is a compact set of periodic orbits having a stable/unstable manifold transverse to the
level. In both cases, the strategy to prove the vanishing of the index is to use the Center Manifold
Theorem to organize the periodic orbits of the collinearity locus and then apply a technical version
of Bonatti-Santiago’s Theorem 1.1, stated in Theorem 5.24. However, in the transverse case we
need a specific compactness argument (Lemma 5.25) to nicely cover Ké‘l and a difficulty to apply
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Theorem 5.24 is that the center manifold of a periodic orbit could be tangent to the level. For
overcoming this a new application of Sard’s Theorem is required (see Lemma 5.26).

Our main idea to prove that Ind(X, K,,s) = 0 is the content of Theorem C. We show that
whenever an unstable periodic orbit is linked with a stable one by an orbit in K, we can flow
the local unstable manifold along a heteroclinic connection and glue it with the stable manifold
of the second periodic orbit (see The Gluing Lemma 4.18). This allows us to define a new open
neighbourhood of K,,; endowed with a trivial foliation by surfaces, such that both X and Y are
tangent to the leaves. By an appropriate choice of basis (see Lemma 4.20 for details), we deduce
that the Gauss map is not surjective, which proves that the index is zero.

3 The case of a flow with a transverse invariant plane field

This section is devoted to proving Theorem B. Recalling the notations of § 2.4, the assumptions of
Theorem B give a C3-triple (U, X,Y) with the additional property that there exists a C® plane field
IT in U everywhere transverse to Y, and invariant by the flow of Y. We assume by contradiction
that Theorem B is not true. Thus, the triple (U, X,Y") also satisfies Ind(X,U) # 0.

Applying Theorem 2.7, we find a new vector field X and a smaller isolating neighbourhood
U C U so that the C3-triple (U X, Y) is a C3-prepared counterexample to the conjecture.

Therefore, it is enough to prove that if (U, X,Y) is a prepared triple such that Y has a C3
invariant plane field II then Ind(X,U) = 0. We shall then consider the normal component N and
the quotient function p associated with this Yi-invariant plane field II. Recall that they are related
with the vector fields X and Y by the equation

X = N+ Y,

and N(z) € II(x) for every z € U.

We will also assume the orientability properties of Proposition 2.10. The idea is to use our index
formula and take advantage of the Y-invariance of II.

Let (U, X,Y’) be such a prepared triple and II be a transverse Y;-invariant plane field. We define

0(z) = sup{t > 0;Ys(x) € U for |s| < t}. (6)

so that D,Y;(II(x)) = II(Y;(z)) when [t| < (z).

3.1 Invariant foliation

Invariance properties — The normal component and the quotient function have the following
fundamental property.

Lemma 3.1. The following properties hold true for every x € U and |t| < 0(x) (see (6))
1. DYy N(z) = N(Y¢(2));

2. p(Ye(x)) = p(z).

Proof. Let x € U and t € (0,6(z)). Let ¥y be a transverse section to Y tangent to Il at z. Let
¥ = Yi(X). This is a transverse section to Y tangent to II at Y;(z), and the time-t map of ¥
provides a holonomy map P : ¥y — ¥;. In particular, by invariance, 3; is tangent to II at Y;(x) and
the hitting time 7 : 3¢ —(0, 00) (defined by (3)) is constant equal to t. We deduce that D,7 = 0
and D, P = D,Y; on Il(z).
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Applying Item 1. of Lemma 2.4, one sees that D, Y; N(z) = D,P N(z) = N(P(z)) = N(Y(x)).
Applying Item 2. of Lemma 2.4, one sees that pu(x) = u(P(x)) = u(Yy(z)). This is enough to
conclude the proof. ]

Let us now consider the variation of y in the normal direction, i.e. define the C2-map ¢ : U = R
by the formula

¢(x) = Dy N(x).
Lemma 3.2. For every x € U and t < 0(x) we have ¢(Yi(z)) = ¢(z)

Proof. By taking derivatives on both sides in Item 2. of Lemma 3.1 with respect to t, we find
DypY () =0 for every z € U. We deduce that

Dot X(2) = Dap N(w) + () Dopt Y () = ().

By taking derivatives on both sides in Item 2. of Lemma 3.1 with respect to x, we find D,u =
Dy, (zyit © DYy when [t| < 0(z). Since X and Y commute we have that D,Y;(z)X(z) = X (Yi(x)),
for every |t| < 6(z) and = € U. Thus, combining these two facts we obtain

$(Yi(x)) = Dy, (@ X (Yy(@)) = (Dy, @yt 0 DuYi(w)) X(2) = Dopp X (2) = 6(2),

which ends the proof. O

3.2 Computation of the index

Appropriate isolating neighbourhood — According to Lemma 3.1, Y is tangent to the foliation
of U by level sets u~!(c). We know that if (U, X,Y) is a C3-prepared counterexample then the
second item of Lemma 2.29 holds. So we will now suppose that du~!(0) # () and that for every
z € K, ay(x) and wy (x) are periodic orbits of Y;. We will compute the index at K by choosing a
more appropriate isolating neighbourhood.

Recall from §2.2 that by definition the stable and unstable sets of a periodic orbit v of a vector
field Y on a manifold M

Wo(y) ={z € My wy(z) =7} and W"(y)={xeM;ay(x)=1}.

The following key lemma will provide us with the desired isolating neighbourhood. The proof
will be postponed until the end of the section.

Lemma 3.3 (Key lemma). Let Y be a C! vector field of a compact surface S, and K CS be an
invariant compact set with the following property: for every x € K, ay(z) and wy (x) are periodic
orbits of Y.

Then there exists a neighbourhood W of K whose boundary is a finite union of simple closed
curves, which are contained in a finite union of curves (C;)*_, such that for every i € {1,...,k}
one of the two following alternatives holds

1. either C; is a periodic curve for'Y;

2. or we have

cGc  J  wWEOv(y) uwh(Oy(y)).
yEPer(Y)NK
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Apply the key lemma with K being our isolated compact subset of Zero(X), which is Y;-invariant,
and S being the level set p~1(0) containing K, endowed with the vector field Y|,~1(0)- Since the
second case of Lemma 2.29 holds, as we mentioned above, it is clear that the assumptions of the
key lemma are satisfied. So, consider W C U N S such as in Lemma 3.3.

Define a tubular neighbourhood V' C U of W, that we identify with W x (=6, ) for a sufficiently
small 6 > 0, and which has the property that ; = ¢ on the component W x {c}. Recall that if v
is a boundary component of W (with the boundary orientation) [() denotes the linking number of
N along v (see Definition 2.23). Our index formula (Theorem 2.24) gives

Ind(X,U) = Ind(X, K) = Ind(X,V) = > (7).
vy C oW

Our proof will consist in showing that for every boundary component v, the Gauss map v|, : v — St
is not surjective, which will imply that [(v) = 0 and the result will follow.

End of the proof of Theorem B — We associate continuously to x € V an orthonormal basis
B(x) = (e1(x),ea(x),e3(x)) of T, M where e3 =Y and ey is tangent to the level set of p containing
x. Note that es is also tangent to level sets of u so e1 is orthogonal to the level sets.

We use coordinates (z1,x2,3) on the sphere S? and identify the oriented circle S! with the
equator {x3 = 0} oriented as the boundary of the north hemisphere {x3 > 0}. Let v be a boundary
component of W and N(z) = a1(z)ei(x) + as(x)ez(x). The Gauss map of N is defined at x € ~ as

_ ((@),00(2))
Vai(z)? + ag(z)?

Theorem B is a consequence of the following result.

v(z)

Lemma 3.4. Let W, V, 5 and v be the objects previously constructed. Then for every boundary
component v, the Gauss map v|, : y— St is not surjective. In particular I(7) = 0 for every such
and Ind(X, K) = 0.

Proof. By Lemma 3.3 there are finitely many curves C;, which may be periodic orbits of Y or
contained inside the stable /unstable sets of periodic orbits of K, such that each boundary component
of W is included inside | C;.

Distinguish the following two points of the equator A = (0,1,0) and B = (0, —1,0). Pick a point
x € Cj.

Case 1. There exists y € Per(Y) N K such that C; C W*(Oy (y)) UW*(Oy (v)).

Recall the function ¢(x) = DyuN(x). By Lemma 3.2 we have that ¢(Y;(x)) = ¢(x), for every
t € R. By continuity of ¢ it follows that ¢(x) = ¢(p), for every p € wy (z) U ay(x). Since for every
y € (wy(x) Uay(x)) N K we have N(y) = 0 and we conclude that ¢(x) = ¢(y) = 0.

Therefore, N(x) € II(x) = (ei(z),ea(x)) is tangent to p~1(0). Hence N(z) belongs to the
intersection II(x) N Tp~1(0) which is generated by es(z). This implies that

v(xz) € {A, B}. (7)

Case 2. C; is a periodic orbit of Ys;.
In this case, we use again the invariance of ¢ which implies that there exists ¢; € R such that

P(y) = ¢; for every y € C;.
If ¢; = 0, we obtain once more D,u N(z) = 0 and we conclude again that (7) holds.
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Suppose now that ¢; # 0 so that Dyu N(y) = ¢; # 0 for every y € C;. In other words, N(y) is
never tangent to the level set 4 ~1(0). In particular, it is not collinear with es over C;. This implies
that v(C;) is a compact subset of the equator {x3 = 0} which contains neither A nor B.

We conclude that v(|JC;) is included in the union of {A, B} with a compact set disjoint from
{A, B}. In particular v is not surjective when restricted to any boundary component of W. O

3.3 Proof of the key lemma

In order to construct the open set W we first construct a neighbourhood of every periodic orbit in K
by annuli whose boundary components are either periodic orbits or contained in its stable/unstable
set. Then we cover every point of heteroclinic connection by a disc of the stable/unstable set
crossing each other transversally. A compactness argument will show that the boundary of the
union of these neighbourhoods satisfies the desired property.

Before starting the proof let us state a consequence of the proof of Poincaré-Bendixson’s theorem.

Lemma 3.5. Let Y be a vector field on the surface S. For every periodic orbit v of Y the sets
We(v) \ v and W*(v) \ v are open sets (which may be empty).

Pick a point z € K assume that x belongs to a periodic orbit v C K. Take a small transverse
arc I containing x, and let P : J — I denote the first return map of the flow Y; to the section where
J is a subarc of I containing x. Let J and J~ denote the connected components of J \ {z}. If J
is small enough we have three possibilities

1. JTCW3(y),
2. JTCWu(y),
3. J* contains a fixed point of P.

If case 1 or case 2 holds, there exists a simple closed curve CT crossing J ', disjoint from v, and
included inside W#(v) and W"(~y) respectively. If case 3 holds there exists a periodic orbit C* of
Y crossing JT, which must also be disjoint from +.

With an analogous reasoning we can build a simple closed curve C~ disjoint from ~, which is
either a periodic orbit of Y or it is contained in W?(y), 0 = s,u and crosses J~. Hence every
periodic orbit v is contained in an annulus A, whose boundary components are either periodic
orbits or contained inside W*(y) U W*"(~).

Every other point x € K is a heteroclinic connection between periodic orbits of K and thus
belongs to W*(v) \ v for some periodic orbit v C K. By Lemma 3.5 there exists a disc D, C W*(y)
centred at x.

Using the compactness of K we deduce that it is covered by an open set W which is a finite union
of annuli A,, and discs D,;. Since stable/unstable sets are open, we can suppose that intersections
between boundaries of these sets are empty or transverse. Hence OW is a finite union of simple
closed curves included in the union of finitely many periodic orbits of ¥ and stable/unstable sets
of periodic orbits of Y included in K, as desired. O

4 The Morse-Smale case

4.1 The Morse-Smale hypothesis

As we saw in Theorem 2.7 and Remark 2.9 in order to prove Theorem A it is enough to prove that
there is no C3-prepared counterexample to this statement (the plane field, normal component and
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quotient functions can be supposed here to come from some Riemannian metric). Using Proposition
2.10 it is enough to prove that there is no C3-prepared counterexample with Y being transversally
oriented and with level sets ! (c) being oriented.

Given a C3-prepared triple with the right orientability conditions we introduce now a stronger
hypothesis than that of Theorem A that we call the Morse-Smale hypothesis, and concerns the
projected vector field Y' (see §2.5). We will then prove that Ind(X,U) = 0 under this assumption.

So let Y’ be the projection of Y on level sets u~!(c). We say that Y satisfies (MS), the Morse-
Smale hypothesis close to K if

(MS) The vector field Y'|,~1(gy is Morse-Smale.

We are now ready to state the main result of this section.

Theorem C. Let (X,Y,U) be a C3-prepared triple such thatY satisfies the Morse-Smale hypothesis
close to K. Then
Ind(X,K) =0.

Remark 4.1. At first sight, Theorem C and Hypothesis (MS) concerns only the projection Y’. Note
however that Y = Y’ when restricted to K. The heart of the argument is actually to prove the
result when Y satisfies (MS’), a stronger condition, under which it will be proven that the Poincaré
maps for Y and Y’ at a periodic point of K have the same derivative (Proposition 4.10).

4.2 The topology of the collinearity locus

Until the end of the section we assume that (U, X,Y) is a C3-prepared triple with orientability
hypotheses of Proposition 2.10 such that Y satisfies (MS). Our goal is to prove that Ind(X, K) = 0.

Combinatorics of the zero set — By hypothesis, for every z € K C u~1(0), ay:(z) (resp.
wyr(x)) is an unstable (resp. stable) periodic orbit of Y'|,-1(g). Since moreover [X,Y] = 0 and
Y =Y’ in restriction to K, we see that they are periodic orbits of Y contained in Zero(X).

Thus K is formed by stable and unstable periodic orbits of Y'|,-1p) and by orbits of Y|, -1
that have an unstable periodic orbit as alpha limit set and a stable periodic orbit as omega limit
set. As explained above, these orbits are orbits of Y.

We shall denote the stable periodic orbits of Y| u—1(0) contained in K by ~7,...,v; and the
unstable ones, by ~{', ..., 7y .

Definition 4.2. We say that an unstable periodic orbit v} is linked to a stable orbit +; if there
exists z € K such that ay(z) = 7' and wy (z) = 7;. In that case we say that the orbit of x links
7, and ;.

The combinatorics of the set K is given by the oriented graph whose vertices are periodic orbits

7;',7; such that there is an oriented arrow from ~;* to 77 if the two orbits are linked.

Continuation of periodic orbits — We want now to understand the topology of the collinearity
locus. The next lemma uses the partial hyperbolicity gained with the Morse-Smale hypothesis in
order to obtain the continuation of periodic orbits inside K.

Lemma 4.3. There exists € > 0, such that for every j € {1,...,ks} there exists A; Cut—e,¢]
and a C3-diffeomorphism 7 [—¢,e] x St — A3 satisfying the following properties
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1. for every c € [—e,¢], we have 7] C pt(c) where we set V¢ = (e, Sy,
2. we have 7;,0 =5
3. for every c € [—¢,¢], WJS»’C 1s a stable periodic orbit of Y|:L_1(C).

Proof. We could invoke Hirsch-Pugh-Shub’s theory and the center manifold theorem. In our context
however the proof is quite elementary.

Let V}? C 11~1(0) be an annular neighbourhood of 7; (recall that p~1(0) is oriented). Let A
be a tubular neighbourhood of V; whose intersection with level sets u~'(c), |¢| < 7, are annuli
which trivially foliate it. Hence there is C3-system of coordinates ¥ : [—n,7] x A — N, where
A = (=1,1) x S" is an annulus, such that ¥(0, A) =V} and V" := ¥(c, A) C ™ !(c).

Recall that Y is tangent to the level sets p~'(c). Pulling back Y’ by ¥ we get a smooth (of
class C3) 1-parameter family &. of vector fields on A indexed by ¢ € [-7,n]. Take a simple arc
I in A cutting the stable periodic orbit of £. The corresponding Poincaré map Py lies inside a
smooth 1-parameter family of maps P. which must be uniformly contracting (up to shrinking I and
taking |c| < e). By Picard’s fixed point theorem every map P. has a unique fixed point z. in 1. A
fairly direct application of the implicit function theorem implies that the variation of z. with the
parameter c is C°.

Saturating by the flow gives a smooth family of embedding ¢. : S — A with |c| < ¢, such that
for every || < e, ¢.(S') is a stable periodic orbit of &.

The embedding ®%(c, z) = U(c, ¢c(2)) for (¢, z) € [—&,&] x 8! is the desired one. O

Now, in order to get that the continuations obtained above are contained in K., we need to use
the continuity of the map ¢ — K, at 0.

Lemma 4.4. The number ¢ > 0 obtained in Lemma 4.3 may be chosen small enough so that for
every j € {1,...,ks}, and ¢ € [—¢,€]

'y;’c C Zero(X — cY').

Proof. As in the proof of the previous lemma, consider an annular neighbourhood of 7 denoted
by V7 C 1~1(0). Consider also a tubular neighbourhood of this annulus having the form N; =
Ujej<e V;° where V¢ Cu~(c) is an annular neighbourhood of 7;¢. We can assume that these
annuli V;*“ are attracting neighbourhoods in the sense that for every x € V;*, we have wy(x) = 7;°.

Recall that 77 C K C Zero(X ). We will use the lower semi-continuity at 0 of ¢ — K. = Zero(X —
cY)NU. Indeed it implies that, if £ is chosen small enough, for every |¢| <&, K. NN # 0.

Now let ¢ € [—¢,¢] and # € K. NNj: in particular 2 € V;* which is an attracting region. Since
X and Y commute, the whole Y;-forward orbit of = belongs to Zero(X — ¢Y'), and accumulates to
a subset of Zero(X — ¢Y’). Since Y/ =Y in restriction to Zero(X — ¢Y’), this implies in particular
that 77 C Zero(X — ¢Y'), concluding. O

Similarly one can perform the continuation of the unstable periodic orbits «;', thus obtaining a
c3 family of unstable periodic orbits of Y|;L 1) |c| < e. These unstable periodic orbits are denoted
by ;" and are subsets of Zero(X — ¢Y). Finally for a fixed i we set AY = [J,v,"*
C3-embedded annulus.

Remark 4.5. The orbits ;°° and 77 are periodic orbits of Y.

, which is a

Below, we consider the open set u~!(—¢,¢) and still denote it by U.
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Figure 3: The orbits 7 are zeros of X — cY’

Combinatorics of neighbouring levels — We shall apply the fact that 0 is a continuity point

of the map Z : ¢ — K, to show that we can define a combinatorics for the neighbouring levels and
that such combinatorics is the same as that of K.

Lemma 4.6. There ezists € > 0 small enough such that if |c| < € then K. NPer(Y) is formed by
the stable and unstable periodic orbits v;" and 77 of Y'|,,-1(). Moreover, there exists x € K. such
that ay (z) = ;"¢ and wy (z) = 'y;’c if, and only if, v and ~; are linked.

CNe
Vi

Figure 4: The combinatorics of periodic orbits

Proof. Notice that K, is invariant under Y”, since it is invariant under Y and the two vector fields
coincide over K,.. Moreover, applying Theorem 2.28 to Y| u—1(c) 1t comes that for every = € K,
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wy (z) = wys(x) and ay (z) = ay/(x) are periodic orbits, still included in K.

Let us denote by K, ..., K™ the connected components of K. Consider U!,...,U™, disjoint
open neighbourhoods of K, ..., K™, respectively. By upper-semicontinuity of Z there exists ¢ > 0
small enough such that if |c| < ¢ then the union of all the U' contain K. Also, we can choose the
neighbourhoods U! small enough so that they are formed by tubular neighbourhoods of attracting
annuli V¥ = U <.V}, as in the proof of Lemma 4.4, and tubular neighbourhoods L;; of orbit
segments linking 7" with 77. By the long tubular flow theorem [12] one can choose these £;; small
enough so that for every x € L;;, its forward Y/-orbit hits J\/']S and its backward orbit hits N}
With this description of open sets U! is it clear that their union doesn’t contain any periodic orbit
of Y’ other than the ;" and ;" given by Lemma 4.3.

Non-linked case. We first consider the case of an isolated stable periodic orbit i.e. a periodic
orbit 77 which is not linked to any other +;". In that case we must have K’ NV} = 77 since if there
existed x € K NV}*\ 77, it couldn’t be a periodic point (since Per(Y') NV® = +7) and its backward
orbit would accumulate to a periodic orbit contained inside K, contradicting the hypothesis.

By continuity, we may assume that ¢ is small enough so that K.N 8/\6?"’ =K.N 8Vjs’c = () when
lc| < e. Now, for || < e, if 47 is linked to some periodic orbit ~;"“, which must be outside of
V>, there exists © € K. NV, whose backward orbit meets 9V;*. This is absurd and ~;* is not
linked to any orbit ;. The case of an isolated unstable periodic orbit follows from a symmetric
argument.

Linked case. Consider now two periodic orbits of Y’ 4% and 7; inside K which are linked. By
lower semicontinuity of Z there exists a point z € K. N L;;. The forward Y/-orbit of z hits /\/j, in
particular wy(z) = '7;-’0. With a similar argument we prove that ay-(x) = ;"“. In particular this
proves that ;" and 7} are linked.

Reverse implication. Let |c| be small enough. By our choice of the U, if x € K, is such that
ayr(x) = ;" and wy(z) = 77 then iterating forward or backward we find a point y = Y/ (z) €
L;i\ (N7 UN). This shows that £;; \ (N7 UN) # 0, and so 7} and 75 are linked. O

The (MS')-hypothesis — We shall prove below that the non-linked periodic orbits inside K
contribute with zero index, therefore we can discard them in our arguments. The proof is an
automatic consequence of a technical version of Theorem 1.1, which is also proven in [3]. Since this

technical statement needs some definitions that have no place in this section, we refer the reader to
Theorem 5.24 below.

Lemma 4.7. If there exists j € {1,...,ks} such that ~; is linked with no v}, i = 1,...,ky. Then ]
is isolated in K = Zero(X) and
Ind(X,~;) = 0.

Proof. Let 7 be such an orbit. It follows from the proof of the previous lemma (the non-linked case)
that there exists a neighbourhood N of 7§ such that Coly (X, Y) NN is a smooth (see Lemma 4.3)
annulus foliated by periodic orbits for Y (thus of Y), 7. Using Bonatti-Santiago’s Theorem 5.24
(proven in [3]) the lemma follows. O

Remark 4.8. A symmetric argument deals with the case of unstable periodic orbits in K not linked
with any stable orbit in K.

From now on, we shall assume that there are no isolated components for the combinatorics of
K. In particular, we can assume the following hypothesis

(MS') Y satisfies (MS) and for every v C Per(Y')NK there exists x € K \Per(Y') such that wy:(z) =
v or ayr(x) = .
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As a consequence, in what remains of the section we will assume that (U, X,Y") is a prepared
triple with U = p~1(e, ) such that for every |c| < &, K. N U consists of stable, unstable periodic
orbits of Y and of heteroclinic connections. Furthermore, the combinatorics of all K., i.e. the
graphs of heteroclinic connections, is independent of c.

4.3 Derivatives of first return maps

We now show that all orbits 7" and 7 possess unstable and stable manifolds respectively for Y;.
This is done by identifying the derivatives of first return maps of Y, Y at those periodic orbits.

Invariant subspaces for the derivative of holonomy maps — We start by an elementary
lemma, that will be useful in the sequel.

Lemma 4.9. Let ¥1,35 be two open sets of R? and P : X1 — 3o be a C'-diffeomorphism on its
image. Let i = 1,2, z; € ¥; satisfying P(z1) = 22, and a; C%; be a C'-arc passing through z;. Let
() neN € o with x, # 21 for every n € N. Assume that x, — 21 as n— 00.

1. Assume that for every n, P(xy) € aa. Then D, P(T, a1) C Tyan.

2. Assume moreover that X1 = Yo = X, a1 = a9 = @, 21 = 29 = 2. Then there exists A € R
(which depends on o and the sequence x,, only) such that for every P : X — X satisfying for
every n € N, P(xy,) = Zpt+1, we have that X is an eigenvalue of D, P in the direction Tc.

3. With the hypothesis of the item above, if we have for every n € N, P(x,,) = x,, then D,P is
the identity on T,c.

Proof. Fori = 1,2, we consider a parametrization «; : (—1,1) — 3; with o;(0) = z;. Let y,, = P(xy,).
By injectivity of P we have y, # zo for every n.
Let s, tn, € (—1,1) \ {0} be such that a(s,) = =, and as(t,) = y,. We must have s,,t, — 0 as

n — 0o. Note that
Poay(ty,) — Poay(0) _ Sp 2(sn) — a2(0) (8)

tn tn Sn,

The left-hand side converges to (D, P)&1(0). The second factor of the right-hand side converges
to c2(0). This proves the first item.

Assume now that 31 = 39 = 3, o = a1, 2 = 21 = P(z1) = 22 and for every n € N, P(x,) =
Zp+1. Then, s, = t,41 and (8) becomes (Poa(ty,) — Poa(0))/tn = (tnt1/tn)(a(tnt1) — (0))/tnt1.

Letting n — oo we find (D, P)&(0) = A&(0) where A\ = lim(¢,,41/t,) depends only on « and .
The second item follows. The exact same argument proves the last item. O

Coincidence of the derivatives — Let us come back to our context. Let .Aj- CU be as con-
structed in Lemma 4.3: this is the union of stable periodic orbits fy;’c of Y'. Let 23 CU be a small
two dimensional section transverse to this annulus which is everywhere transverse to Y.

The section X7 is transverse to all yj’c, which are stable periodic orbits of Y. Note that since
these orbits are periodic orbits of Y there is a well defined first return map P; : 57— X7 for ¥
where 57 C X7 Is an open neighbourhood of ¥3 N .A;?. For such a j set zj’c =XiN 'yjs.’c. Since Y and
Y’ are C%close in the neighbourhood of AZ we can assume that QF, the first return map to X3 of
Y’ is defined in the same neighbourhood.
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Lemma 4.10. For every such j we have
Dx;,cP]‘.S = ij,cQj
In particular there exists A;’C € (0,1) such that
s,c
Spec (Dw?cP]‘?) ={L A"}

Proof. Consider v = A7 N %3, This is an embedded arc which by Lemma 4.3 consists of fixed points
of both Poincaré maps. Hence their derivatives both have eigenvalue 1 in the direction of «.

Since Y satisfies (MS’) and by Lemma 4.6 there exists x € 23 N K. which is not periodic under
any of the flows and such that w(z) = ’yj’c. It cuts the arc X% N p~1(c) at a monotone sequence
of points xy = x, 1,2, ...., Tp,.... Since x € K. these points are on the same orbit of PJS and Qj.
Using Item 2 of Lemma 4.9 we deduce that the derivative P} and () have the same eigenvalue in
the direction of the level set u~!(c). Note finally that since u~!(c) is orientable the eigenvalue AT¢
is positive. This concludes the proof of the lemma. O

Remark 4.11. An analogous statement for unstable periodic orbits may be proven by a symmetric
argument

Remark 4.12. A priori the plane field II, the normal component N, the quotient function p and
the vector field Y/ depend on the choice of a Riemannian metric. However, after Lemma 4.10, we
see that the (MS’)-hypothesis does not depend on this choice: the differential of the first return
maps at periodic orbits of all Y/ are equal. As a consequence we have the freedom to change the
Riemannian metric if needed.

4.4 Computation of the index

The set K is a disjoint union of finitely many compact connected components, which are unions of
periodic orbits and of heteroclinic connections between them:

K=K'U..uUK™

We know that

m
Ind(X,K) =) Ind(X, K").
=1

Thus, we may restrict ourselves to the case where K is connected. We can therefore consider a
prepared triple (U, X,Y’) where the properties listed above hold and furthermore

The sets K., ¢ € (—¢,¢€) are connected.

Remark 4.13. Recall that, by (MS’), for every ¢, K, contains more than one periodic orbit and that
every stable periodic orbit is linked with some unstable one, and vice-versa.
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Stable manifolds — Lemma 4.10 implies that every orbit 7;’0 possesses a local stable manifold
for Y which is an embedded open annulus.

The union for all [c| < € of these local stable manifolds is an open neighbourhood of A7, included
in the open set U, foliated by surfaces: we denote by W5 this foliation and by W;’c its leaves.

The dynamical meaning of these surfaces is the following. A point x € U belongs to W;’C if and
only if wy (z) = vj’c. The next lemma states that these stable manifolds are invariant by the flows
Xt and Nt-

Let X7 be a small 2-dimensional transverse section of ¥ cutting the annulus A‘;- transversally.
We also have transverse sections X of Y cutting A transversally. We can choose them so they are
trivially foliated by local stable and unstable manifolds W, W;" respectively. We can modify the
metric close to these sections so they are everywhere orthogonal to Y: by Remarks 2.3 and 4.12 even
if N and p are modified, this does not change relevant dynamical properties (like the combinatorics
of K.) nor the assumption (MS’). This implies in particular that we can take N to be tangent to
all sections X7 and X'

Lemma 4.14. For every j the following assertions hold true.

1. For every x € W, we have
X(z) € T,W;*.

2. For every x € X5 N st’c we have

N(z) €T, (350 W),

Figure 5: N is tangent to the stable manifolds
Proof. Assume that x € W;“: there exists x9 € 7, such that dist(Y;(z), Yi(z0)) —0 as t — oo.

The flows of X and Y commute so, if & is small enough so that X, (z) € U, we have

dist(Yy(Xn(x)), Yi(Xn(20))) = dist(Xp(Yi(z)), Xn(Yi(z0)))
< sup || Dy Xl dist(l@(:n),l/}(mo))t% 0.

zelU o
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Since zg € 7;* C Coly(X,Y) we have Xj,(xo) € 77 which proves that Xj,(z) € W}, and the first
item follows.

In order to prove the second item, recall that N is tangent to Xj. Clearly, it is enough to treat
the case where N(x) # 0. Since the set of zeros of N is precisely Coly(X,Y) this implies that the
subspace of T, M spanned by X (z) and Y (z) has dimension 2. By the first item, this subspace is
contained in TijS’C. Since W;’C has dimension 2 this proves that T, ijS’C is the subspace spanned
by X (x) and Y (z). Thus,

N(z) = X(z) — p(2)Y () € T,W;*“.

This completes the proof. ]

Remark 4.15. The intersection X7 N W;’C is then a union of regular orbits and zeros of the vector
field N. The zeros of N correspond to intersections of X3 with the collinearity locus Coly (X,Y).

Remark 4.16. Lemma 4.14 is purely topological and the proof does not need the Morse-Smale
hypothesis. If the stable or unstable sets of a periodic orbit exists (in the sense of §2.2) then it must
be invariant by the flow of X as an immediate consequence of the commutation. If furthermore one
knows that this set is a manifold, it follows that X must be tangent to it.

The same argument shows that orbits ;" also possess unstable manifolds W;"“, which foliate an
open subset of V: W denotes this foliation. Moreover given a section X} of A} chosen everywhere
orthogonal to Y, the intersection W;* N XY also writes as a union of regular orbits and zeros of V.

| L

Figure 6: Glueing stable and unstable manifolds

Glueing stable and unstable manifolds — Our goal from now on is to use stable and unstable
manifolds in order to build a neighbourhood of K which is foliated by certain surfaces to which X
and Y are tangent.

We can assume that every section 27 is foliated by local stable manifolds W]-S’C of periodic orbits
7;¢, and similarly every section X} is foliated by unstable manifolds W;" of periodic orbits ;"
for ¢ € (—¢,¢). Hence there are open neighbourhoods of the annuli A7 and A, denoted by V; and
Vi, which are foliated by annuli which are respectively local stable and unstable manifolds of Y.
By Lemma 4.14 X is tangent to these annuli. In order to achieve our goal, it remains to foliate in

a coherent way neighbourhoods of heteroclinic connections by surfaces to which X is tangent.
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For every i the manifold (X¥N VV;"O) \ Per(Y") has two connected components. There are exactly
two possibilities.

1. Either only one of these components contains a point € K \ Per(Y).

2. Either the two connected components contain one.

Fix such an ¢, and assume that the first property holds for ¥} N I/Viu’o. Pick a point z; € KNXY
whose orbit is a heteroclinic connection between the unstable periodic orbit ~;" 0 and some stable
periodic orbit for Y. We consider the fundamental domain J; := (P/*(x;), ;] C X% N Wi“’o.

If the second property holds for ¢, we will consider two zeros of X, :z::r and z; , that belong to
different components of (X*NW;?)\ Per(Y) as well as the two different corresponding fundamental
domains J;r, J;”. In that case we set J; = Jj udJ; .

Lemma 4.17. If x € K \ Per(Y) then there exists some i such that the Y;-orbit of x intersects J;.

Proof. By our hypothesis if z € K there exists i such that ay (z) = ;' 0 In particular its Yi-orbit
must intersect the section XY at some point y.

By definition the iterates of J; by the first return map P cover the union of the connected
components of (£% N W)\ Per(Y) that contain an element of K. In particular an iterate of y

must lie inside J;. Since this iterate belongs to the Y;-orbit of z, the proof of the lemma is over. [

Using Lemma 4.17 as well as the compactness of J;, we deduce the existence of a finite open
cover {U}F_| of J; N K in ¥ having the following property

e there exists a holonomy map for the flow of Y, hol! : U} c =¥ — Y% where j = j(I) (Figure 8).
By reducing € and the open sets Ul-l, if necessary, we can require further that

e The sets W*° N U} form a codimension one foliation of each open set U!. Then each U} is

foliated by segments L7 of local unstable manifolds W;"°, for ¢ € (—¢, ).

The following result is a key one and shows how one can glue together stable and unstable
manifolds.

Lemma 4.18 (Glueing Lemma). Every holonomy map holé Ul xy — Y3 carries the leaves L
onto segments ;' of local stable manifolds W;*°.

Proof. This key lemma is a simple consequence of Lemma 2.4 and of Remark 4.15.

Indeed, the latter remark implies that segments L;"“ are unions of regular orbits and zeros of N.
Then Lemma 2.4 implies that the holonomy map holé carries respectively regular orbits and zeros
of N onto regular orbits and zeros of N. A last application of Remark 4.15 proves that these form
segments of local stable manifolds: see Figure 7. The lemma follows. O

Using our Glueing Lemma, we now show how to glue stable and unstable manifolds. For each
i,1 let O denote the holonomy tube of the transverse section U/ (see Figure 8). More precisely, for
each x € U}, there exists a smallest positive time 7(z) such that Y;(2) (%) € £f. Then, we put

Ol .= {Yy(z);z € UL, 0 <t <7(x)}.
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Figure 7: The glueing lemma

For each leaf L} its holonomy tube is a surface which may be pasted smoothly with the stable
manifold. By Lemma 4.14 these surfaces are tangent to X and Y.

Recall that the annuli A} and .Aj possess neighbourhoods with disjoint closures, that we denoted
by V;* and V7, which are respectively foliated by unstable and stable annuli.

Finally using our Glueing Lemma 4.18 we obtain the following

Corollary 4.19. The set
Vv=JVuviuo;
i,
is an open neighbourhood of K, satisfying Zero(X) N AV = 0, which admits a foliation by surfaces
Se, ¢ € (—¢,¢€) such that, for every x € S, (X (z),Y (x)) C TyS..

End of the proof of Theorem C — In the next lemma, whose proof is automatic from the
previous section, we build a C basis for the tangent bundle over of M restricted to V.

Lemma 4.20. There exists C° vector fields {e1, ea,e3} over V with the following properties

1. e1 =Y everywhere

2. for every x € S. one has ex(x) € TpS. and (e1(x),e2(x)) = TpS..

3. for every x € S. one has e3(x) # 0 and (ez(x)) N T,S. = {0}.

We can write, for each = € V, X (x) = Y71 oy(2)ey(x). Notice that, since X (x) is tangent to

Se, as(z) vanishes everywhere. As a consequence the Gauss map
(a1($)7042(x)7a3(x)) 2
Vai(z)? + ax(z)? + az(2)?

takes its values in the equator x5 = 0 and therefore has zero topological degree. We deduce that

Ind(X, K) =0,

a:x €IV

allowing us to conclude the proof of Theorem C.
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Figure 8: Holonomy tubes

5 Proof of Theorem A

5.1 Plan of the proof
Until the end of the section (U, X,Y) is a C3-prepared triple such that

(x) The Poincaré map of every periodic orbit of Y included in the collinearity locus Coly (X,Y)
has at least one eigenvalue of modulus different from 1.

Recall the function Z : ¢ — K. = Zero(X — ¢Y) N U, which maps each small parameter ¢ to the
compact set K. C p~'(c), and that we consider the Hausdorff topology in the space of compact
subsets of M (see § 2.6). The set

R = {regular values of u} U {continuity points of Z} 9)

is a residual subset of a small interval centred at 0. As (U, X,Y) is prepared, we have 0 € R. Here
again we will assume that Y is transversally oriented and that level sets p~!(c) are oriented.

Linked and non-linked periodic orbits — The difference between Hypotheses (MS) and (x)
is the following. Under hypothesis (MS), periodic orbits lying in K are linked by non-periodic
orbits, or are isolated. Under Hypothesis (x) we can have simultaneously isolated periodic orbits
and accumulation of non-linked periodic orbits and the dynamics of Y/ on K, might be wilder: we
must study this phenomenon.

Recall that a Yi-periodic orbit v C K. is said to be linked if there exists x € K, \ Per(Y') such
that v = w(x) or v = a(x). A periodic orbit which is not linked is called non-linked.

We shall adopt the following notations.

e K, denotes the union of linked periodic orbits of Y included in K.

e K, denotes the union of non-linked periodic orbits of Y included in K.
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o K5 denotes K \ K.

Applying Theorem 2.28 we see that K, is formed by linked periodic orbits and by non-periodic
orbits in K whose o and w-limit sets are periodic orbits included in K.

Plan of the proof — The proof of Theorem A goes along the following lines.
1. We prove that K,,; and K,; are disjoint compact sets so that K = K,,s Ul K,;; and

Ind(X, K) = Ind(X, Kps) + Ind(X, K,y)).

2. We prove that Y satisfies the hypothesis (MS) close to K,,s and deduce that Ind(X, K,,s) = 0.

3. We prove that there exist finitely many open sets Uy, ...,U,, C U which cover K,;; enjoying the
following properties.

e Fori=1,...,m, Zero(X) N oU; = .
o Ind(X, K,;;) = >, Ind(X, ;).
e Coly(X,Y)NU, is an open annulus consisting of periodic orbits of Y.

4. Using [3] we deduce that Ind(X,U;) = 0 for every i = 1,...,m and, consequently, that
Ind(X, Kp) = 0.

5.2 Position of stable and unstable manifolds with respect to level sets of u

Until the end of the paper we assume that Hypothesis (%) holds. It asserts that every periodic
orbit of Coly(X,Y’) possesses a local stable or unstable manifold. Under Hypothesis (MS'), all
these stable and unstable manifolds are tangent to the level set u~1(0). We will first establish this
property for every periodic orbit of Kj.

Proposition 5.1. Let «y be a Yi-periodic orbit included in K; and z € . Then the local stable (resp.
unstable) manifold at z is tangent to u=1(0).
5.2.1 Nice tubular neighbourhoods

In order to perform some of our arguments below (which are somewhat based on a careful account
of the dimension of the objects we are looking for) we need to foliate in a very specific way small
neighbourhoods of collinearity periodic orbits.

Lemma 5.2. Let cp € R and v C K., be a periodic orbit of Y;. Then, there exists a neighbourhood
U of v satisfying the following properties.

1. U fibers over vy and the fiber 3X(z) over any z € v is an embedded disc transverse to'Y and Y.

2. The foliation by level sets of p induces a trivial foliation of U by annuli, denoted by U, =
p=Y(c)NU. These annuli are transverse to the sections L(z).

3. There exists n > 0 such that for every z € =y, the first return map P to X(z) is well-defined on
¥ (%), the n-neighbourhood of z in X(z). Moreover for every y € X,(z), the forward Y'-orbit
of y does not leave U before hitting ¥(z) again.
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Definition 5.3. A tubular neighbourhood of a periodic orbit of Y satisfying the properties above
will be called a nice tubular neighbourhood.

Let us explain now how to construct nice tubular neighbourhoods. The argument is classical
and elementary so we only give a sketch.

Proof. The foliation by level sets 1~ !(c) is trivial in U, in particular the curve v is holonomy-free
inside = 1(cg). This foliation is sub-foliated by integral curves of Y”, so there exist charts trivializing
both foliations simultaneously. Therefore using the compactness of v, the fact that Y and Y’ are
close in a neighbourhood of Coly(X,Y) for the C'-topology and adapting the proof of the Long
Tubular Flow Theorem (see [12, Chapter 3, Proposition 1.1]) we can construct the fibration ¥ over
~. The remaining properties follows from the same consideration. O

Notations — Until the end of the article we will adopt the following notations.

e For every z € «y the fiber ¥(z) will be denoted by X if there is no ambiguity.
e U, will denote the annulus p~!(c) NU.

e For z € 7, I.(z) will denote the embedded interval X(z) NU. = %(z) N~ t(c). These intervals
foliate ¥(z). When there is no ambiguity we will write I, = I.(2).

5.2.2 Invariant subspaces for the derivatives of holonomy maps
We state now a consequence of Lemma 4.9.

Lemma 5.4. Let yC K be a periodic orbit of Y such that there exists x € K \ Per(Y) with
wy (z) = 7. The following properties hold true.

1. Let X1, 39 be two transverse sections of Yy cutting v at z1 and zo respectively, such that there
exists a holonomy map along v denoted by P : (X1, 21) —(22,22). Then the derivative D, P
sends T, [$1 N p=1(0)] to Thy[Ee N = 1(0)].

2. Let ¥ be a transverse section of Y at z € v, and P be the first return map to . Then the
etgenvalues of D, P are real.

3. IfW§ (2) (resp. W (2)) is transverse to u=1(0) at the point z, then for everyy € v, Wi (y)
(resp. W (y)) is transverse to = 1(0).

Proof. Let a; and s denote respectively ¥1Nu~1(0) and X2Np~1(0). These are two curves passing
through z; and 23 respectively.

By hypothesis there exist points xg, yo, 1, Y1, 2, y2... such that for every n € N, =z, € X,
Yn = P(x,) € X9, and x,, — 21, Yn — 22 as n — 00. These correspond to points of the forward orbit
of x meeting successively %1 and ¥o. Since by hypothesis x € K we must have z,,y, € K for every
n. In particular, for every n we have x,, € a1 and y, € as. We deduce the first item by applying
Lemma 4.9.

Assume now the hypotheses of the second item. The first item applied to P shows that D,P
preserves a l-dimensional subspace of the 2-dimensional space T,3. Hence it does not possess a
complex eigenvalue, and the second item follows.

The last item clearly follows from the first item and from the invariance of £° under the flow. [

Remark 5.5. The conclusion of Lemma 5.4 remain unchanged if v = ay (z) for x € K \ Per(Y).
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5.2.3 Confined periodic orbits

In this section we establish Proposition 5.1. We will argue by contradiction assuming the existence
of v C K accumulated by the orbit of some x € K and whose stable/unstable manifold is transverse
to the level set 11~ 1(0) at some point z € 4. Using a Poincaré-Bendixson like argument we will prove
that nearby levels contain periodic orbits confined between the stable/unstable manifold of v and
regular non-periodic orbits of collinearity between X and Y (see Figure 9), which accumulate to .
We will then prove that z belongs to the stable/unstable manifold of every such confined periodic
orbit (see Figure 10), contradicting the fact that these orbits lie on different level sets.

Hypotheses — Let v C K; be a periodic orbit for Y. Without loss of generality we assume that
there exists z € K with wy (z) =~.

As mentioned before, we argue by contradiction. We will assume that + possesses a local stable
manifold, which must be a 2-dimensional annulus since v is not a sink (see Lemma 2.21).

By Lemma 5.4, since the local stable manifold of v is not everywhere tangent to ~'(0) it must
be everywhere transverse to p~1(0).

We consider U, a nice tubular neighbourhood of . As we mentioned before, U is foliated by
annuli U, = U N p~(c) and for every z € v, the fiber ¥(z) is trivially foliated by arcs I.(z) =
S(2) N~ (e).

Since the local stable manifold W} (2) is transverse to U, for every z € ~, it must be transverse
to U, for |c| small enough, and the intersection U, N W} () must be a simple essential closed curve.
We denote it by ae.

Note that the arcs I.(z), are simple, connect the two boundary components of U, and that the
projected vector field Y/, which is tangent to the level sets p~!(c), is transverse to each of these
arcs.

Monotone sequences and confined periodic orbits — In this paragraph we obtain the main
ingredient of the proof of Proposition 5.1: the existence of confined periodic orbits.

Let us start by observing that the orientation inside U provides each I. with an order <. This
order is coherent: if y1 < y2 € I. and v}, v} € I are close enough to y; and yo respectively, then
y1 < ¥a.

We fix 29 € v, and consider a point x € Ip(20) N K such that Of(z) CU and wy(z) = 7.
We can assume that zp < x, the case x < z is entirely analogous. On Iy(z9) the sequence
T = T,T1,T2, ..., Tp, ... given by the successive intersection points Oy (z) N Iy(z0) = O, (z) N Ip(zp)
converges to zg and is monotone, i.e.

20<.<Tp<.<T2<11<T)=2

(this is the principal ingredient of the proof of Poincaré-Bendixson’s theorem: see [7, Chapter 11,
Proposition 1]) .

Now since the order < is coherent (in the sense defined above) and since Y’ is transverse to the
arcs I., the following holds. If y € X, (20) N U, is close enough to x we also must have a monotone
sequence

<< Y < <Y<y <Yy =y

of intersection points Oy, (y) N I.(20) (these points might a priori leave U,).
When |c| is small enough, the closed curve a, meets I.(z9) at a unique point that we will denote
by zc.
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The next lemma shows how when |c| is small enough, there exists a periodic orbit v, CU. of Y’
included in K. which is confined between «. and the forward orbit of a point y € K. NU..

Lemma 5.6 (Confined periodic orbits). When |c| is small enough there exists y € K.NU, satisfying
the following properties.

1. The forward orbit OF,(y) is included inside U. and . = wy(y) is a periodic orbit for Y’
included inside K.

2. The intersection v. N I.(29) is reduced to a unique point x. satisfying y' > x. > z. for every
y' € OF.,(y) N I(20)-

3. The periodic orbit . is simple, essential in U, and disjoint from a.

U. Uy

-

i T S, =

-~
R LT T P PP

| Wi ()

~

Figure 9: Confined periodic orbits

Proof. We assumed that zg < x so by lower-semicontinuity of the function Z : ¢ — K. NU, there
exists y € K. NU (in particular y € U,) such that y € ¥,(2.) and z. < y. As we explained in a
previous paragraph if y is chosen close enough to x the successive points of Oy, (y) N I.(z0) form a
decreasing sequence

< Y < o< P<yt<yYyYy=y

which might a priori be finite, if it were to leave U.

On the one hand Oy/(y) = Oy(y) does not intersect W (7), since otherwise, the forward
Y;-orbit of y would accumulate on . This is impossible because these two orbits are included in
different level sets of u.
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On the other hand, a. = W} _.(v) NU, is closed, simple and essential inside the annulus U.. So
it must disconnect this annulus. In other words, the forward Y} orbit of y, which is decreasing and
above a., cannot leave U, without intersecting «., which is included inside WS (7).

As a consequence the sequence (y,,)nen defined above is infinite, decreasing and satisfies y,, > z.
for every n € N. Therefore it must have a limit z. € I.(zp). Since it is true that for every n € N,
Yn+1 = P(yn), we must have P(z.) = z. and 7. = Oy (z.) is a periodic orbit of Y.

Since Oy (y) = Oy (y) C K. we must have 7. C K., proving the first item. The orbit v, meets
I.(zp) at a unique point because it is transverse to the fibers I, and the intersection with I.(zp)
can’t be monotone (this is another step in Poincaré-Bendixson’s theorem). This prove the second
item. It is simple because it is an orbit of Y’, and essential because it is transverse to the fibers I..
Finally, it must clearly be disjoint from W;S () since it is disjoint from v (the two periodic orbits
of Y lie on different level sets of p). This proves the last item. O

Remark 5.7. The curves v, and «. are both essential, simple inside the annulus i, and they are
disjoint. As a consequence they bound an annulus inside ..

The point y obtained in Lemma 5.6 can be obtained close to a point of the forward orbit of
x, which is arbitrarily close to v. Hence the orbit 7. may be chosen arbitrarily close to v in the
C3-topology.

u(: uO

’7(:

Figure 10: Proof of Proposition 5.1

End of the proof of Proposition 5.1 — By Remark 5.7 the periodic orbit 7. obtained in Lemma
5.6 can be chosen arbitrarily close to «. In particular, by continuity of the stable manifold, it is
possible to assume that its local strong stable manifold W _(7.) is transverse to U, and intersects
transversally Uy (see the stable manifold theorem for partial hyperbolicity [6]).
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The intersection W} (v.) N Uy, denoted by S must be a simple closed curve, transverse to the
fibers Iy (if ¢ is small enough). So this simple closed curve must be essential. In particular it
disconnects Uy. Also it must be disjoint from -, because, as we saw in the proof of Lemma 5.6, ~
cannot meet the stable manifold of ~..

By coherence of the order <, the point x lies inside a connected component of Uy \ 3, and ~
is included inside the other one. We deduce that the forward orbit of x, which accumulates on =,
must intersect 5. This is absurd because then we would have wy (z) = 7.. Proposition 5.1 follows.

5.3 Structure of the linked and non-linked components of the zero set

In this section, our main goal will be to show that there are only finitely many periodic orbits in
Coly(X,Y) with a stable (resp. unstable) manifold tangent to the level set of 1 (see the Finiteness
lemma 5.11 below). This will allow us to isolate the disjoint sets K,; and K,,s. This step is funda-
mental in our strategy because it will permit us to calculate the Poincaré-Hopf index separately.

5.3.1 No saddle

The first step will be establishing that for a generic ¢y, Y; has no hyperbolic periodic orbit included
in K, (recall that by Lemma 2.21, we know that for such a co, there is no attracting nor repelling
periodic orbit included in K,,). This is a consequence of Proposition 5.1.

Proposition 5.8 (No saddle). Let co € R, v C K, be a Yi-periodic orbit and P be the first return
map at z € v. Then D, P has an eigenvalue of modulus 1.

The next lemma is an ingredient for the proof of Proposition 5.8, which will also be useful in
the sequel.

Lemma 5.9. Let ¢o € R be a continuity point of the map ¢ — K.. Assume that v C K, is isolated
in K, and let U be an isolating neighbourhood. For c close enough to co the following properties
hold true

1. KcnU # 0.
2. For every x € K. NU the complete orbit Oy (x) is included inside U.

Proof. The first item of the lemma holds when c is close enough to ¢y due to the lower semi-continuity
at c¢o of the map Z : ¢ — K., and to the fact that vC K., NU.

By our choice of U we have K., NoU = () so, by compactness of 0U, when ¢ close enough to c,
we have K., NoU = 0.

Consider now ¢, with |¢ — ¢p| small enough such that K. NU # (). Take a point x € K. NU. By
Yi-invariance of K., we conclude that the orbit Oy (z) does not meet OU. Hence it must be entirely
included in U, proving the second item. ]

Proof of Proposition 5.8. Let v C K., be a Y;-periodic orbit. Let U be a nice tubular neighbourhood
of 7. Assume by contradiction that the Poincaré map P : ¥, (z) — X(2) at a point z € v has no
eigenvalue of modulus 1. By Lemma 2.21, v is hyperbolic of saddle type. We can assume that z is
the only fixed point of P inside X(z).

We cannot have v C K, since otherwise Proposition 5.1 would imply that both the stable and
unstable manifolds of v are tangent to the level set u~!(cg), which is absurd. Therefore, v C K.
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We claim that {z} = K., N 3(z) = K., N I,. Indeed, assume by contradiction the existence of
another z € K., N I.,. By our assumption on U, the point x is not fixed by P. Since the orbit of
x under Y and Y’ coincide we know that the successive intersection points of the orbit of x with
I, (z) are monotone. Without loss of generality we can suppose that > z and that for every k£ > 0

z < PM(z) < P*(2). (10)

This sequence of elements of K., must converge to a fixed point y of P. So it must be equal to z,
which then has to belong to K;. As we showed above, this is absurd.

Now we can use Lemma 5.9. If ¢ is close enough to ¢g then there exists x € K. NU, and its full
orbit Oy (x) is contained inside ¢. Using one more time the vector field Y’ we see that the sequence
(P"™(x))nen is monotone in I.(z) and thus accumulates to a fixed point y of P. This contradicts
the fact that z is the unique fixed point of P inside ¥(z). O

5.3.2 Finiteness lemma and index at the linked component

Before stating our next result we need the following theorem stated below, which is a consequence of
a general result about codimension 1 foliations due to Haefliger (see [5, Proposition 3.1, Théoréeme
3.2)).

Theorem 5.10 (Haefliger). Let Y be a non-vanishing vector field over a compact surface S, possibly
with boundary. Then, for every x € S there exists a transverse segment which cuts every periodic
orbit of Y in at most one point. Moreover, one has that Per(Y) = Per(Y).

Lemma 5.11 (Finiteness lemma). Let ¢ € R. Then, there are only finitely many periodic orbits of
Y which:

1. are included in K.;

2. have a stable (or unstable) manifold everywhere tangent to the level set u=1(c).

Proof of Lemma 5.11. We argue by contradiction and assume the existence, for ¢ € R, of an infinite
sequence of periodic orbits for Y, «,, C K. which have (say) a stable manifold everywhere tangent
to the level set ;= !(c). The case where all the 7, have an unstable manifold tangent to the level
sets is analogous.

Pick a sequence z,, € v,. By compactness of K., and passing to a subsequence if necessary, we
can suppose x, —x for some z € K.. Let ¥ be a transverse section of Y containing x and let
denote Oy (). Since K, is Yi-invariant, we have v C K.. Note that, when restricted to K., the two
vector fields Y and Y’ coincide, so in particular 7, C Per(Y’) for every n.

Applying Theorem 5.10 to the vector field Y| u—1(c) We deduce two things. Firstly, v is a periodic
orbit for Y’. Secondly there exists an arc I. C u~!(c) such that for n large enough I.N~, is reduced
to a point ¥, which is a fixed point for the first return map P’ of Y’ to I.. We may assume I. C 3.
Since 7, v C K. we deduce that 7 is a periodic orbit for Y and that for n large enough, y,, are fixed
points of P, a first return map of Y to X.

By reducing ¥ if necessary we can take a trivialization (e, e2) of the tangent bundle of ¥, such
that the vector fields e; and ey have the following properties:

e ¢ is everywhere tangent to the intervals 1.

® ¢ is everywhere orthogonal to the intervals I,
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We deduce from the third item of Lemma 4.9 that D, P leaves invariant T, 1. and induces the
identity on that space. By our assumption (%) 7 must have a hyperbolic (stable or unstable)
invariant subspace for D, P which is transverse to T,1. C Tpu~'(c).

From these remarks we deduce that the matrix of the linear map D, P : T, — T, when written
in the basis (ej(x), e2(x)) has the form

1 ¢
0 B )

By our main assumption (*) we must have |3| # 1. On the other hand, the matrix of D, P :

T,,Y — T, Y has the form
An  Cn
0 fBn )’

with |A,| < 1 because the periodic orbits 7, have a stable manifold tangent to the level set.

By continuity we have 3, — 8 and ¢,, = ¢. In particular for n large enough the linear map D, P
have two eigenvalues A,, and 3, both of them with modulus different from 1.

This implies that ~, for n large is, either a sink, which contradicts Lemma 2.21, or a saddle
type hyperbolic periodic orbit, which is in contradiction with Proposition 5.8. This concludes the
proof. O

Structure of linked periodic orbits — From the Finiteness Lemma together with Proposi-
tion 5.1 we deduce that K,,s is isolated from K.

Corollary 5.12. There are neighbourhoods U of Kp,s and V' of K, such that U NV = ().

Figure 11: Proposition 5.1 and Lemma 5.11 imply the isolation of the sets K,,s and K,;.

Proof. From the Finiteness Lemma together with Proposition 5.1 we deduce that K,,; is a union of
finitely many linked periodic orbits and non-periodic orbits linking them. In particular, there is no
sequence x, € K,,s such that x, —»x € K,;. Assume by contradiction that the result is not true.
Then, we necessarily must have a sequence y,, € K,,; converging to a point in K,,,s. By Theorem 5.10
the periodic orbit 7, = O(y,) accumulates on some linked periodic orbit 7. Now, consider a small
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arc I C p~%(0) everywhere transverse to Y’ intersecting transversally v and infinitely many ~,
at points y/,, which are fixed points for the first return map. By Lemma 4.9 one deduces that
the derivative of the first return map in the direction of I is the identity. But this contradicts
Proposition 5.1, because ~ is linked. ]

Since K, is entirely formed by periodic orbits, by combining Theorem 5.10 with Corollary 5.12
we conclude that it is compact. As we have the decomposition

K=K, UKy

by definition, it follows that Ind(X, K) = Ind(X, K,s) + Ind(X, K;).
The goal of this section is to establish the result below.

Proposition 5.13. There exists a neighbourhood U of K5 such that Y’\Vl(o)mU is Morse-Smale.
By Theorem C we obtain

Corollary 5.14. Ind(X, K,,s) =0
The finiteness results of previous section will play a crucial role.

Proposition 5.15. The set K; of linked periodic orbits is a finite union of periodic orbits {y1, ..., Yn}
of Y.

Proof. This is an immediate consequence of Proposition 5.1 and Lemma 5.11. ]

Notice that K; C Per(Y’). From this remark, the proof of Proposition 5.13 will be achieved
from the two subsequent lemmas below.

Lemma 5.16. Every v; C K; is hyperbolic for Y’|lf1(0).

Proof. Without loss of generality we may assume that v; has a stable manifold for Y. Choose U,
a nice tubular neighbourhood of v;, and z € 7;. Consider the associated fiber ¥ = ¥(2) and arc
I = In(2). Let P; and P]{ be respectively the first return maps of Y and Y’ to X. Note that the
arc Iy is Pj-invariant (recall that Y’ is tangent to u~'(0)).

By hypothesis v; C K so (assuming for example that it has a stable manifold) there exists a
sequence of points z, € K N Iy converging to z with z,4+1 = Pj(xy,) = PJf (zn,). We deduce two
things. By Proposition 5.1 P; has a stable manifold tangent to Iy. By Lemma 4.9 D, P; and DZP]{
have the same eigenvalue in the direction of Iy. This implies that +y; is stable for Y;i ~1(0)*

Lemma 5.17. There exists a neighbourhood U of K,s such that for every x € u=1(0) N U there
exists i = i(x) and j = j(x) € {1,...,n} such that ay(x) = ; and wy: () = ;.

Proof. 1t follows from the previous lemma that every ; is either a sink or a source for Y| L=1(0)-
As a consequence, for every j there exists a neighbourhood U; of 7; such that U; N p~1(0) is either
an attracting or repelling neighbourhood of ~; for Y| 4=1(0)

If = belongs to a periodic orbit there noting left to prove. So, assume that x is a non-periodic
point. By Theorem 2.28 for every x € K, \ K; there exists v; and ; such that ay(z) = v; and
wy(x) = 7;. By compactness and the long tubular flow theorem, there are finitely many open sets
Vi,j such that

K < [ JWi n =) U@ n = (0)),

1,7 J

and for every x € V;; N u~1(0) one has ay(x) = v; and wy(z) = ;. The lemma follows. O
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5.3.3 Structure of the non-linked component

Decomposition of K,; — Let Kgl be the subset of K,,; consisting of those periodic orbits having
a local stable/unstable manifold everywhere tangent to p~1(0). Let K5 = K,y \Kg;l

nl —

Lemma 5.18. The following properties hold true.
1. Kgl s a finite union of periodic orbits;
2. Kg:l and KnLl are compact;
3. Kn=KLUKL.

Proof. The third item is automatic from the definition of the sets Kgl and Kffl, while the first item
and (consequently) the compactness of K1, follows from the finiteness lemma (Lemma 5.11).

Finally, to see that qul is compact we argue as in the proof of Lemma 5.11. Indeed, take a
sequence X, € Yy, with v, C K#l If x = lim,, _, o Ty, by Haefliger’s theorem there exists a periodic
orbit v C K such that x € 7.

As in the proof of Lemma 5.11 one obtains from Lemma 4.9 that the first return map induces
the identity tangentially to the level y~1(0). Therefore, the stable/unstable manifold of v must be
transverse to the level set, and so x € K#l This completes the proof. O

The remaining sections of the paper will be devoted to proving the following proposition.
Proposition 5.19. 1. We have Ind(X, K1) = 0.

2. We have Ind(X, K5) = 0.

As the Poincaré-Hopf index is additive we obtain
Corollary 5.20. Ind(X, K,;) = 0.

Since Ind(X, K) = Ind(X, K,s) + Ind(X, K,;), by Corollaries 5.14 and 5.20 we have that the
proof of Theorem A is reduced to that of Proposition 5.19.

5.4 Index at the non-linked component

The objective of this section is to prove Proposition 5.19. Recall that we have obtained a decom-
position of the zeros of X

K=K, UKL UK.
In particular, Kz:l and KnLl are isolated compact sets of zeros of X. Our strategy will be to show

that these sets are included in some C! surface, and then to apply the results of [3]. The main
ingredient of our argument is the Center Manifold Theorem.

5.4.1 The Center Manifold Theorem

In this section we state a version of the classical Center Manifold Theorem [6],[16] which is suitable
for our purposes.

Before giving the statement, let us give the general context. Let Y be a C! vector field on a
3-manifold M and let v be a periodic orbit of Y. Let z € ~ and consider the first return map
P : ¥,(z) = X(z), to some section ¥(z) everywhere transverse to Y. Assume that the derivative
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D,P : T,%(z) - T.%X(z) has a center unstable partially hyperbolic splitting F¢ @ E*, with the
respective eigenvalues being 1 and A with |[A| > 1, or a center stable partially hyperbolic splitting
E® @ E° with respective eigenvalues being A and 1 with |[A\| < 1. With these notations, one has the
following result.

Theorem 5.21 (Center Manifold Theorem). There exists a C1 curve WE (2) contained in (2)
(called the center manifold), which is tangent to E€ at z and enjoys the following dynamical property:

there exists n > 0 such that
Fix(P)N%,(z) C Wi.(2).

See also the main theorem in [2], from which the above statement follows as a particular case.

5.4.2 The tangential case

By Lemma 5.18 Kgl is the disjoint union of finitely many periodic orbits. Those periodic orbits
are isolated inside K. Hence Ind(X,~) is well defined for every Y;-periodic orbit included in Kgl
Hence, item (1) of Proposition 5.19 follows from the lemma below.

Lemma 5.22. Let v be a periodic orbit of Y included in Kgl Then
Ind(X,v) = 0.

The rest of this paragraph is devoted to proving Lemma 5.22. Thus, let v be a periodic orbit
of Y included in K, and take a nice tubular neighbourhood U of v (see Definition 5.3). Since v is
isolated in K, it is possible to choose U so that K NU = .

We will assume that v has a local stable manifold W () which is tangent to u=1(0). The case
of an unstable manifold follows from a symmetric argument.

We will now assume that U/ is small enough so that for every ¢ such that u=!(c) NU # 0,
Properties (1) and (2) of Lemma 5.9 hold. By reducing it if necessary, we can assume that it is a
nice tubular neighbourhood of 7 (recall Lemma 5.2 above). In particular, U comes equipped with a
fibration by disks > over v and a trivial foliation by annuli /.. Choose z € vy and consider the fiber
Y = ¥(z) which is foliated by embedded intervals I. = U, N 3. Consider P, the first return map to
Y. defined in a neighbourhood of z.

By hypothesis T.% = E*(z) @ E(z) where E*(z) is tangent at z to Ip = Uy N X and E°(z) is
the eigenspace of D, P corresponding to the eigenvalue 1. By the Center Manifold Theorem there
exists a C'-embedded interval Wf,.(z) C ¥ tangent at z to E°(z) satisfying the dynamical property
(for some 7 > 0 small enough)

Fix(P) 1 4(2) C Wo,(2).

Lemma 5.23. There exists a smaller nice tubular neighbourhood V CU satisfying the same prop-
erties as U (the fiber containing z is still denoted by ), as well as the following properties.

1. Coly(X,Y)NS = WE(2) N V.
2. All points of W .(2) NV are fized points of the Poincaré map P.

Proof. We start the proof by making an elementary observation. The center manifold W (z) is
an embedded interval transverse to Iy. As a consequence, we can shrink U/ so that it keeps the
properties of Lemma 5.9 (note that &/ N K = ) and W[ () is an interval embedded in U that
crosses transversally all level sets I. contained in Y. In particular W _(z) is a transverse section of
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Wiely)

Figure 12: The center manifold is transverse to the level sets

the trivial foliation defined by intervals I., and intersects every such interval at exactly one point.
Since W .(z) contains every fixed point of P this implies that for |c| small enough, I. contains at
most one fixed point of P.

Consider an interval I, intersecting V. Since V enjoys the properties of Lemma 5.9 there exists
x € VNK,.. Using the second property of Lemma 5.9 we see that P™(x) is well defined for every n € Z
and belongs to I.. Hence by compactness, the points ¢, = lim,, —, _o, P"(z) and p. = lim,, _, oo P"(z)
exist, belong to I. and are fixed points of P.

Since I. contains at most one fixed point we must have p. = ¢.. Recall that intervals I. are
endowed with a coherent order. Using the vector field Y/ we see that the sequence (P"™(x))nez is
monotone. So we must have ¢. = x = p..

Consequently, every level set I. intersects the collinearity set at a unique point, which must be
a fixed point of P, and therefore must belong to W _(z). Since W[ _.(z) meets such a level set at a
unique point, and since these level sets foliate V, the lemma is proven. ]

To complete the proof of Lemma 5.22 we shall need a technical version of the main result in [3].
To avoid introducing more heavy notation we shall not state it with the exact same words as in [3]
- for that we refer the reader to Definition 4.2 of that paper, which contains the assumptions of the
result below with a very detailed presentation.

Theorem 5.24 (Theorem A of [3] - Technical version). Let (U, X,Y") be a prepared triple satisfying
the following additional assumptions

1. Zero(X)NU =+ a Yi-periodic orbit.
2. U is a nice tubular neighbourhood of ~.

3. There exists an embedded annulus S which is trivially foliated by periodic orbits of Y and so
that Coly (X,Y) = S, with Zero(X — ¢Y') being a Y;-periodic orbit

Then, Ind(X,U) = 0.

This result, although not precisely stated in [3] is the main step in the course of proving The-
orem 1.1. Indeed, in that paper one assumes that there exists a counterexample to Theorem 1.1
(the main theorem in [3]). Then, Lemma 4.3 of that reference proves that there exists another
counter-example satisfying precisely the assumptions of Theorem 5.24, but with Ind(X,U) # 0.
The rest of the paper then shows that this leads to a contradiction. Thus, from the proof in [3] one
can easily extract Theorem 5.24.
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Figure 13: A particular case of Theorem 5.24: the collinearity locus is an annulus foliated by Y
periodic orbits, all of them which are partially hyperbolic. The commutation obliges X to be tangent
to the foliation by stable manifolds, leaving no room for X to turn, forcing the vanishing of the
index. In Lemma 5.22 we are in fact in this particular case.

Proof of Lemma 5.22. Consider V, the tubular neighbourhood of v obtained in Lemma 5.23. The
surface S obtained by pushing W .(2)N%y is an annulus trivially foliated by periodic orbits of Y. We
can modify slightly V so that VN Coly(X,Y) = S. Lemma 5.22 now follows from Theorem 5.24. [
5.4.3 The transverse case

Recall that Kﬁl consists of periodic orbits of ¥ which are not accumulated by non-periodic orbits

included in K, and whose stable manifolds are transverse to the level set 1 =1(0).

Nice decomposition of K#l — We want to prove that Ind(X, K#l) = 0. Here the difficulty is
that there is no reason why this compact set should consist of finitely many periodic orbits of Y.
To overcome this difficulty, we will need the next lemma, which gives a nice decomposition of K,Jl-l

Lemma 5.25. There exists a finite collection of periodic orbits vi, ...,V contained in Kf;l and of
open sets Uy, ..Uy, satisfying the following properties.

1. For every i =1,...k, U; is a nice tubular neighbourhood of ;.
2. Fori#j, UinU; N K = 0.

3. For everyi=1,..k, KNoU; = 0.

4. KLU u;.

Proof. We consider a periodic orbit v included in Krfl and a nice tubular neighbourhood of v as in
Definition 5.3. Let z € v and ¥ = ¥(z) be the fiber through z. As in the proof of Lemma 5.11
we have that the only elements of K which accumulate on z belong to K,J;l Thus we can choose U
small enough so that X N K C Kﬁl
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Figure 14: Iy N K has empty interior

We claim that no point y € XN K = Iy N K s an interior point of Ip N K. Indeed assume
that there exists an interval I C Iy containing y which consists entirely of elements of K (and so,
all of them must be elements of Kf;l) Thus every point of I has a local stable manifold, which is
transverse to Ip. The union of these local stable manifolds is therefore a neighbourhood of y in X,
that we denote by V.

By the lower semi-continuity at 0 of Z : ¢ — K.NX there must exist ¢ # 0 such that K.NV # ().
A point of this set must belong to the stable manifold of some point of I C IoN K. This contradicts
the fact that the orbit of any point x € K. NV under the Poincaré map P must stay inside the
level set I.. The claim is proven.

It follows that we can choose the nice tubular neighbourhood U so that K N oU = (). Moreover,
if two such open sets U and V intersect, then we can modify one of them such that Y NV N K = ().

Indeed, since Uy is an annulus and K is compact, we can modify U so that OU N Uy has two
connected components (say SZ{F and S;), each one of them being an embedded circle disjoint from K.
Now, if some V intersects U we modify V by requiring that for every z € v and every z € VN Iy(z2),
if a, = Sy N1Io(2) and b, = S;; N Iy(z) then = > a, or b, > z. This implies that U NV N K =, as
claimed.

These open sets cover K #l by definition. Since K rfl is compact it can be covered by finitely many
such open sets. This achieves the proof of the lemma. O

End of the proof of Proposition 5.19— By Lemma 5.25 we must have

k
Ind(X, Ky) = > Ind(X,U;).
=1

Hence we are reduced to prove the following lemma.

Lemma 5.26. If U is a sufficiently small nice tubular neighbourhood of a periodic orbit included
in K}, satisfying K N OU = 0, then Ind(X,U) = 0.

nl’

Here again the idea is to use the Center Manifold Theorem, in order to get down to a case
already treated in [3]. The problem now is that the center manifold does not need to be everywhere
transverse to the level sets of . We will perform a small modification of X in order to get down to
a situation similar to that of the tangential case.
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Proof of Lemma 5.26. Let z € v, ¥ = ¥(z) and W[ _(z) be a center manifold included in ¥. By
reducing U if necessary we can assume that every fixed point of the first return map P to X has a
stable manifold, which is transverse to all the intervals I. it meets.

Look at the restriction of p to W .(2). We first note that it is not constant. This is because
W .(2) contain all fixed points of P in a neighbourhood of z and we can prove, as in the proof of
Lemma 5.23, that close to z there are fixed points z. of P contained inside K..

Now we observe that this is a function of class C! (in fact of class C®) between 1-dimensional
manifolds. By Sard’s theorem, there exists an interval [e7, £2] of regular values of this function. Let
¢ € [e1, 2] be a continuity point of the map Z : ¢ — K. N X.

ioc(y)

Figure 15: Using Sard’s theorem

The numbers €1 and 2 can be chosen arbitrarily close to 0, so we can assume that Zero(X —
cY)NoU = () and that
Ind(X,U) = Ind(X — Y, U).

The set K. N Y must consist of fixed points of P. Indeed, since ¢ is a continuity point of Z we
can show as in the proof of Lemma 5.23 that the forward orbit of a point x € K. is entirely included
inside I.. Therefore it must accumulate to some fixed point of P. By Proposition 5.6 we have that
the local stable manifold of this fixed point is tangent to I., which is a contradiction

Since W () contains the fixed points of P close enough to z we deduce that K.NX C I.NW[ ().
This set must be finite since it is the transverse intersection of two relatively compact embedded sub-
manifolds of 3. We deduce that K.NU is a finite union of periodic orbits of Y, denoted 1, ..., Yim.-
We can consider V; CU, a nice tubular neighbourhood of ~; such that Zero(X — ¢Y)NV; = ~; and
Zero(X — ¢Y) N 9dV; = 0. We then have

Ind(X — cY,U) =) Ind(X — Y, V).
=1

We need to prove that for every i = 1,...,m, Ind(X — ¢Y,V;) = 0. The situation is now the
following. There is a embedded disc included in V; that contains all fixed points of P (this is
W{.(2) NV;), and there is no point of collinearity inside 0V;. Thus we are in condition to apply
Lemma 5.23. Once again Theorem 5.24 allows us to conclude that Ind(X — ¢Y,V;) = 0. The proof
of the lemma is now complete. ]

6 Conclusion

As a conclusion, we propose to explain how the present paper inscribes inside a wider program to
prove the C3-case of the main Conjecture in its alternative form (see the introduction). We give
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below the main steps of a strategy aiming at achieving that. We use the notations and terminology
introduced in the present work.

Warning — We describe below the ideas of an ongoing work in order to illustrate that the present
paper and [3] should be the two legs on which a proof of the Conjecture would stand. Even if we
feel that our strategy is mature enough to be described below, we don’t announce the resolution of
the Conjecture. However we hope to answer the natural question: how far are we, with [3] and the
present paper, from the resolution to the conjecture?

Prepared counterexamples — As in both this paper and [3] the strategy consists in showing
that there is no prepared counterexample to the conjecture. The proof should then be a long
argument by contradiction, supposing that there is one. The difference is that we don’t make any
hypothesis on the geometric configuration of the collinearity locus, nor on the dynamics close to
periodic orbits included in that set. First, let us explain how to organize the collinearity locus.

Organization of the collinearity locus — As explained in the present paper, for prepared coun-
terexamples, the collinearity locus consists of periodic orbits of Y and of connexions between them.
Note that a periodic orbit of Y inside Coly(X,Y") is homotopically non-trivial in the corresponding
level set of u since otherwise it would enclose a zero of Y. It is possible to define an equivalence
relation of such orbits saying that two of them are equivalent if they bound an annulus. Equivalence
classes are included in essential annuli whose boundary components are periodic orbits.

Since level sets are compact there are finitely many equivalence classes, which may be linked to
others, in the sense that extremal periodic orbits are connected by non-periodic orbits of Y. This
defines the combinatorics of equivalence classes inside level sets of u. As in the present paper we
can assume that the intersection of Coly(X,Y’) with each level set is connected (by additivity of
index). And using a (non-trivial) genericity argument, we can assume that the combinatorics of
equivalence classes of periodic orbits is the same in all level sets. Compare with §4.2 where the
same situation was obtained by using tools from hyperbolic dynamics.

Using the index formula — In order to prove that, in the context described above, Ind(X,U) =
0, our strategy is to use the index formula (see Theorem 2.24) and to prove that [(v) = 0 for every
boundary component vy of x~'(0). Using the same arguments as in this paper, we obtain some
flexibility and we can ask that v C u~!(c) for |¢| small enough (and the parameter ¢ might not be
the same for all ). There are two cases that will be treated by completely different methods and
that correspond to the two ideal cases identified in the introduction.

1. ~ is isotopic to a periodic orbit of Y included inside Coly (X,Y);

2. v can be retracted to a cycle of periodic orbits and non-periodic orbits of Y linking them
contained in Coly(X,Y).

Case 1 can be treated with an adaptation of the arguments developped in [3].

Case 2 is much more similar to the spirit of the present paper. We cannot hope to find a
foliation by surfaces to which X and Y are tangent because we are not allowed to use tools from
hyperbolic dynamics. However using a very careful dynamical study close to periodic orbits of the
cycle, we can hope to build stable/unstable manifolds for periodic orbits of the cycle corresponding
to the level set p~1(c) for a generic set of parameters c. Obviously if, for example, a non-periodic

47



orbit of Y inside K. accumulates to a periodic orbit of the cycle in the future then it must belong
to the stable manifold of this periodic orbit.

Using an adaptation of our glueing lemma we can build, for a generic set of parameters c,
topological surfaces to which both X and Y are tangent, obtained by glueing stable and unstable
manifolds of periodic orbits of the cycle (that is why we need to use the genericity of our set of
parameters). These surfaces, denoted by S, satisfy the following properties for every parameter ¢
belonging to this generic set

e S, contain the cycle corresponding to p~!(c);
e X, Y and thus N are tangent to Sg;

e S, is homotopic to u=1(c) modulo the collinearity locus.

Figure 16: In the example above, the level set is a pair of pants and the collinearity locus consists
of two linked equivalence classes of periodic orbits. Two boundary components are isotopic to the
two red periodic orbits: they are treated by Case 1. The last one can be retracted to the blue cycle
and will be treated by Case 2. The blue periodic orbit on the left hand side possesses an unstable
manifold for Y and the blue periodic on the right hand side possesses a stable manifold. Both
contain the connexion and will be glued just as in §4.4.

Here again, the reader can compare with the situation described in §4.4 to which we came down
using tools from hyperbolic dynamics. Proving this is the most difficult and technical step and the
heart of our strategy. This is where we need new ideas. Let us however note that creating stable
manifolds without using hyperbolic dynamics, but only the fact that X and Y commute, was also
the technical heart of [3].

The surfaces S. don’t form a foliation as in §4.4. But given the boundary component ~y of z~*(c),
they will simplify the computation of I(y). Indeed we can use a homotopy from S, to x~!(c), modulo
collinearity, to lift v to a closed curve 4/ on S, satisfying I(y) = I(v). Since the vector field N along
' is tangent to S. it will be easy to show that I(7) = 0.

After these steps we can deduce that Ind(X,U) = 0. We hope to be able to carry on a proof
based on this strategy in a forthcoming paper.
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