Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/31392
Cómo citar
Título: | DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders |
Autor: | García González, Gastón Martínez Tagliafico, Sergio Fernández, Alicia Gómez, Gabriel Acuña, José Casas, Pedro |
Tipo: | Ponencia |
Palabras clave: | Anomaly Detection, Deep Learning, Multivariate Time-Series, Dilated Convolution, VAE |
Fecha de publicación: | 2022 |
Resumen: | Due to its unsupervised nature, anomaly detection plays a central role in cybersecurity, in particular on the detection of unknown attacks. A major source of cybersecurity data comes in the form of multivariate time-series (MTS), representing the temporal evolution of multiple, usually correlated measurements. Despite the many approaches available in the literature for time-series anomaly detection, the automatic detection of abnormal events in MTS remains a complex problem. In this paper we introduce DC-VAE, a novel approach to anomaly detection in MTS, leveraging convolutional neural networks (CNNs) and variational auto encoders (VAEs). DC-VAE detects anomalies in time-series data, exploiting temporal information without sacrificing computational and memory resources. In particular, instead of using recursive neural networks, large causal filters, or many layers, DC-VAE relies on Dilated Convolutions (DC) to capture long and short term phenomena in the data, avoiding complex and less-efficient deep architectures, simplifying learning. We evaluate DC-VAE on the detection of anomalies on a large-scale, multi-dimensional network monitoring dataset collected at an operational mobile Internet Service Provider (ISP), where anomalous events were manually labeled during a time span of 7-months, at a five-minutes granularity. Results show the main properties and advantages introduced by VAEs for time-series anomaly detection, as well as the out-performance of dilated convolutions as compared to standard VAEs for time-series modeling. |
Descripción: | Transferencia tecnológica. Grupo de investigación Detección de anomalías en series de tiempo, Facultad de Ingeniería. Instituto de Ingeniería Eléctrica. |
Editorial: | IEEE |
EN: | 7th International Workshop on Traffic Measurements for Cybersecurity (WTMC 2022), Genoa, Italy, jun 6 2022, pp 1-7 |
Financiadores: | Este trabajo ha sido parcialmente financiado por la ANII-FMV, proyecto con referencia FMV-1-2019-1-155850 Detección de anomalías en sistemas de telecomunicaciones mediante métodos de aprendizaje continuo, por Telefónica, y por la Austrian FFG ICTof- the-Future project DynAISEC – Adaptive AI/ML for Dynamic Cybersecurity Systems. Gastón García fue apoyado por la beca ANII POS-FMV-2020-1-1009239, y por CSIC, en el marco del programa Movilidad e Intercambios Académicos 2022. |
Citación: | García González, G., Martínez Tagliafico, S., Fernández, A. y otros. DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders [en línea]. EN: 7th International Workshop on Traffic Measurements for Cybersecurity (WTMC 2022), Genoa, Italy, jun 6 2022 , pp 1-7. Piscataway, NJ : IEEE, 2022. |
Aparece en las colecciones: | Transferencias Tecnológicas - Instituto de Ingeniería Eléctrica Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
GMFGAC22.pdf | Camera-Ready | 1,49 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons