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Abstract—Due to its unsupervised nature, anomaly detection
plays a central role in cybersecurity, in particular on the
detection of unknown attacks. A major source of cyberse-
curity data comes in the form of multivariate time-series
(MTS), representing the temporal evolution of multiple, usu-
ally correlated measurements. Despite the many approaches
available in the literature for time-series anomaly detection,
the automatic detection of abnormal events in MTS remains
a complex problem. In this paper we introduce DC-VAE,
a novel approach to anomaly detection in MTS, leveraging
convolutional neural networks (CNNs) and variational auto
encoders (VAEs). DC-VAE detects anomalies in time-series
data, exploiting temporal information without sacrificing
computational and memory resources. In particular, instead
of using recursive neural networks, large causal filters, or
many layers, DC-VAE relies on Dilated Convolutions (DC) to
capture long and short term phenomena in the data, avoiding
complex and less-efficient deep architectures, simplifying
learning. We evaluate DC-VAE on the detection of anoma-
lies on a large-scale, multi-dimensional network monitoring
dataset collected at an operational mobile Internet Service
Provider (ISP), where anomalous events were manually
labeled during a time span of 7-months, at a five-minutes
granularity. Results show the main properties and advan-
tages introduced by VAEs for time-series anomaly detection,
as well as the out-performance of dilated convolutions as
compared to standard VAEs for time-series modeling.

Index Terms—Anomaly Detection, Deep Learning, Multivari-
ate Time-Series, Dilated Convolution, VAE

1. Introduction

Cybersecurity data often consists of hundreds or thou-
sands of variables periodically measured and analyzed
in the form of time-series, resulting in a complex-to-
analyze multivariate time-series (MTS) process. Real-time
anomaly detection in such MTS processes is a key in-
gredient for cybersecurity, in particular to detect 0-day

attacks or threats never seen before. There is a vast liter-
ature on the problem of anomaly detection in time-series
using traditional statistical models [1]–[5]; due to the
non-stationary, non-linear, and high-noise characteristics
of cybersecurity time-series data, these traditional mod-
els have difficulty predicting them with high precision.
Hence, modern approaches to time-series anomaly detec-
tion based on deep learning technology have flourished
in recent years [6]. Most approaches in the literature
address the problem by either focusing on univariate time-
series modeling and analysis – running an independent
detector for each time-series, or by considering multi-
dimensional input data with short-term memory analysis,
to avoid the scalability limitations introduced by very deep
architectures, or the complexities and delays introduced by
recurrent topologies.

In this paper we introduce DC-VAE, an unsuper-
vised and multivariate approach to anomaly detection in
time-series, based on popular Variational Auto-Encoders
(VAEs). VAEs are a generative version of classical auto-
encoders, with the particularity of having, by conception,
continuous latent spaces; as such, VAEs map the input
variables into a multivariate latent distribution, which en-
ables a generative process. A VAE provides a probabilistic
manner to describe an observation in the latent space.
Thus, rather than training an encoder which outputs a
single value describing each latent state attribute, the
encoder is formulated to describe a probability distribution
for each latent attribute. One of the key advantages of
VAEs for anomaly detection is that, for a given input,
they produce as output prediction (i.e., reconstruction) not
only an expected value, but also the associated standard
deviation, corresponding to the distribution the model
understands (i.e., has learned) generated the corresponding
input. This automatically defines a normality region for
each independent time-series, which can then be easily
exploited for detecting deviations beyond this region.
Using VAEs as underlying approach allows the user to
visualize the region of normal behavior in a simple and
appealing way, enabling fine-grained, per univariate time-
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Figure 1. Variational autoencoder and the reparameterization trick.

series anomaly detection.
To exploit the temporal dependencies and character-

istics of time-series data in a fast and efficient manner,
we take a Dilated Convolutional (DC) Neural Network
(NN) as the VAE’s encoder and decoder architecture.
DCNNs have shown excellent performance for processing
sequential data in a causal manner [7], i.e., without relying
on recursive architectures, which are generally less time-
efficient and more difficult to train (e.g., gradient explod-
ing/vanishing problems). Compared to normal convolu-
tions, dilated convolutions improve time-series modeling
by increasing the receptive field of the neural network,
reducing computational and memory requirements, and
most importantly, enabling training – and detection – on
longer-in-the-past temporal sequences.

We apply DC-VAE to MTS arising from the monitor-
ing of an operational mobile ISP, detecting anomalies of
very different structural properties. We compare DC-VAE
against a traditional VAE model for snapshot-input-based
anomaly detection, where the encoder/decoder architec-
ture is based on standard, fully connected feed-forward
neural networks, and the input corresponds to the MTS at
the specific time of detection. We shall refer to this model
as Standard-VAE (S-VAE).

The reminder of the paper is organized as follows:
Section 2 briefly overviews the related work; in Section
3 we describe the DC-VAE model in detail; Section 4
presents the mobile ISP dataset collected for evaluation,
and reports the results obtained with DC-VAE in the
detection of anomalies, additionally benchmarking its per-
formance against S-VAE. Finally, Section 5 concludes the
paper.

2. Related Work

There are multiple surveys on general-domain
anomaly detection techniques [1]–[3] as well as on net-
work anomaly detection [4], [5]. The diversity of data
characteristics and types of anomalies results in a lack of
universal anomaly detection models. Modern approaches
to time-series anomaly detection based on deep learning
technology have flourished in recent years [6]. Due to their
data-driven nature and achieved performance in multiple
domains, generative models such as VAEs and Generative
Adversarial Networks (GANs) have gained relevance in
the anomaly detection field [8]–[14].

Modeling data sequences through a combination of
variational inference and deep learning architectures has
been vastly researched in other domains in recent years,
mostly by extending VAEs to Recurrent Neural Networks
(RNNs), with architectures such as STORN [15], VRNN
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(a) Prediction of time-series TS3. (b) Prediction of time-series TS5.

1

0

1
AACCost

1
0
1

AADCost

1
0
1

AASCost

1

0

1
ADTCost

1

0

1
ECPCost 

1

0

GSPCost

1

0

1
AACCount

2

0

AADTraffic

1

0

1
AASCount

1

0

1
ADTCount

2

0

ECPCount

1

0

GSPCount
Variable

x

x

TS2 TS3TS1 TS4

TS5 TS6 TS7 TS8

TS9 TS10 TS11                         TS12

1

0

1
AACCost

1
0
1

AADCost

1
0
1

AASCost

1

0

1
ADTCost

1

0

1
ECPCost 

1

0

GSPCost

1

0

1
AACCount

2

0

AADTraffic

1

0

1
AASCount

1

0

1
ADTCount

2

0

ECPCount

1

0

GSPCount
Variable

x

x

TS2 TS3TS1 TS4

TS5 TS6 TS7 TS8

TS9 TS10 TS11                         TS12

(c) Prediction of time-series TS9. (d) Prediction of time-series TS12.

Figure 2. Example of time-series analysis through DC-VAE, for the
TELCO dataset. The normal-operation region is defined by µx and σx.

[16], and Bi-LSTM [17] among others. Convolutional
layers with dilation have been also incorporated into some
of these approaches [18], [19], allowing to speed up the
training process based on the possibilities of paralleliza-
tion offered by these architectures.

This work has as basis our previous work on genera-
tive models for network anomaly detection in mutivariate
time-series [14], where we conceived Net-GAN, an archi-
tecture based on GANs and RNNs, where Long Short-
Term Memory networks (LSTMs) were employed as both
generator and discriminator models to capture temporal
dependencies in the data.

3. Anomaly Detection with DC-VAE

Sequential data such as time-series is generally pro-
cessed through sliding windows, condensing the informa-
tion of the most recent T measurements. Let us define
x as a matrix in RM×T , where M is the number of
variables in the MTS process, i.e., defines the dimension
of the problem. We also define x(t) ∈ RM×1 as an M -
dimensional vector, representing the MTS at a certain time
t, and xm(t), with m ∈ {1, . . . ,M}, as the value of the
m-th time-series at time t.

As depicted in Figure 1, for a given input x, the
trained VAE model produces two different predictions,
µx and σx – matrices in RM×T , corresponding to the
parametrization of the probability distribution which better
represents the given input. If the VAE model was trained
(mainly) with data describing the normal behavior of the
monitored system, then the output for a non-anomalous
input would not deviate from the mean µx more than
a specific integer α times the standard deviation σx.
On the contrary, if the input presents an anomaly, the
output would not belong to the region determined by
the predicted mean and standard deviation. For reference,
Figure 2 presents the main ideas behind the usage of VAEs
for time-series anomaly detection, in this case portraying
the results obtained in the analysis of the TELCO dataset,
used in this paper for evaluation purposes (see Section 4).
For each of the displayed time-series TSi – the TELCO
dataset corresponds to tweleve time-series TS1 to TS12,
its real value xi, along with the outputs of the VAE µxi

and σxi , are reported.



• In order to deal with long-range temporal dependencies needed for raw audio generation,
we develop new architectures based on dilated causal convolutions, which exhibit very
large receptive fields.

• We show that when conditioned on a speaker identity, a single model can be used to gener-
ate different voices.

• The same architecture shows strong results when tested on a small speech recognition
dataset, and is promising when used to generate other audio modalities such as music.

We believe that WaveNets provide a generic and flexible framework for tackling many applications
that rely on audio generation (e.g. TTS, music, speech enhancement, voice conversion, source sep-
aration).

2 WAVENET

In this paper we introduce a new generative model operating directly on the raw audio waveform.
The joint probability of a waveform x = {x1, . . . , xT } is factorised as a product of conditional
probabilities as follows:

p (x) =
T∏

t=1

p (xt | x1, . . . , xt−1) (1)

Each audio sample xt is therefore conditioned on the samples at all previous timesteps.

Similarly to PixelCNNs (van den Oord et al., 2016a;b), the conditional probability distribution is
modelled by a stack of convolutional layers. There are no pooling layers in the network, and the
output of the model has the same time dimensionality as the input. The model outputs a categorical
distribution over the next value xt with a softmax layer and it is optimized to maximize the log-
likelihood of the data w.r.t. the parameters. Because log-likelihoods are tractable, we tune hyper-
parameters on a validation set and can easily measure if the model is overfitting or underfitting.

2.1 DILATED CAUSAL CONVOLUTIONS

Input

Hidden Layer

Hidden Layer

Hidden Layer

Output

Figure 2: Visualization of a stack of causal convolutional layers.

The main ingredient of WaveNet are causal convolutions. By using causal convolutions, we
make sure the model cannot violate the ordering in which we model the data: the prediction
p (xt+1 | x1, ..., xt) emitted by the model at timestep t cannot depend on any of the future timesteps
xt+1, xt+2, . . . , xT as shown in Fig. 2. For images, the equivalent of a causal convolution is a
masked convolution (van den Oord et al., 2016a) which can be implemented by constructing a mask
tensor and doing an elementwise multiplication of this mask with the convolution kernel before ap-
plying it. For 1-D data such as audio one can more easily implement this by shifting the output of a
normal convolution by a few timesteps.

At training time, the conditional predictions for all timesteps can be made in parallel because all
timesteps of ground truth x are known. When generating with the model, the predictions are se-
quential: after each sample is predicted, it is fed back into the network to predict the next sample.

2

Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1×1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt−1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)

ln (1 + µ)
,

3

(a) Normal convolution. (b) Dilated convolution.

Figure 3. (∗)Figure taken from the original WaveNet paper [7]. Using CNNs with causal filters requires large filters or many layers to learn from
long sequences. Dilated convolutions improve time-series modeling by increasing the receptive field of the neural network, reducing computational
and memory requirements, enabling training on long sequences.

In the VAE model, observations x are assumed to
depend on a random variable z that comes from a lower-
dimensional latent space. The objective is to maximize
P (x), the probability of the observations through the
model. Similar to x, z will also be a sequence of length
T , but with a smaller number of dimensions J < M ,
z ∈ RJ×T . In formal terms, given an input sample
x characterized by an unknown probability distribution
P (x), the objective is to model or approximate the data’s
true distribution P using a parametrized distribution pθ
with parameters θ. Let z be a random vector jointly-
distributed with x, representing the latent encoding of x.
We can express pθ(x) as:

pθ(x) =

∫
z

pθ(x, z) dz, (1)

where pθ(x, z) represents the joint distribution under
pθ of the observable data x and its latent representation
or encoding z. According to the chain rule, the equation
can be rewritten as:

pθ(x) =

∫
z

pθ(x|z)pθ(z) dz (2)

In the vanilla VAE, pθ(x|z) is considered a Gaussian
distribution, and therefore, pθ(x) is a mixture of Gaussian
distributions. The computation of pθ(x) is very expensive
and in most cases even intractable. To speed up training
and make it feasible, it is necessary to introduce a further
function to approximate the posterior distribution pθ(z|x),
in the form of qφ(z|x) ≈ pθ(z|x). In this way, the overall
problem can be easily translated into the autoencoder
domain, in which the conditional likelihood distribution
pθ(x|z) is performed by the probabilistic decoder, while
the approximated posterior distribution qφ(z|x) is com-
puted by the probabilistic encoder, cf. Figure 1.

To train this autoencoder and make the application
of backpropagation feasible, a so-called reparameteriza-
tion trick is generally introduced. The main assumption
on the latent space is that it can be considered as a
set of multivariate Gaussian distributions, and therefore,
z ∼ qφ(z|x) = N (µz,σz

2). Given a random matrix
ε ∼ N (0, I) and � defined as the element-wise product,
the reparameterization trick permits to explicitly define
z = g(µz,σz) = µz+σz�ε. Thanks to this transforma-
tion, the variational autoencoder is trainable and the prob-
abilistic encoder has to learn how to map a compressed
representation of the input into the two latent vectors µz

and σz , while the stochasticity remains excluded from the
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Figure 4. Encoder architecture using causal dilated convolutions, imple-
mented through a stack of 1D convolutional layers.

updating process and is injected in the latent space as an
external input through ε.

To exploit the temporal dimension of the input time-
series, we proposed an encoder/decoder architecture based
on popular CNNs, using Dilated Convolutions (DCs) [7].
DC is a technique that expands the input by inserting
gaps between its consecutive samples. In simpler terms,
it is the same as a normal convolution, but it involves
skipping samples, so as to cover a larger area of the
input. Figure 3 explains the basic idea behind DCs. The
convolutions must be causal, so that detection can be
implemented in real-time. Because such architectures do
not have recurrent connections, they are often much faster
to train than RNNs, and do not suffer from complex-to-
tame gradient exploding/vanishing problems. Using DCs
instead of standard convolutions has several advantages
for real-time analysis: (i) they increase the so-called re-
ceptive field, meaning that longer-in-the-past information
can be fed into the detection; (ii) DCs are computationally
more efficient, as they provide larger coverage at the same
computation cost; (iii) by using DC, the pooling steps are
omitted, thus resulting in lesser memory consumption;
(iv) finally, for the same temporary receptive field, the
resulting network architecture is much more compact.



dataset # samples duration # anomalous samples

training 310,980 3 months 5,407 (1.7%)
validation 103,680 1 month 385 (0.4%)
testing 317,952 3 months 7754 (2.4%)

total 732,612 7 months 13,546 (1.8%)

TABLE 1. TELCO DATASET. SEVEN-MONTHS WORTH OF
MEASUREMENTS WERE MANUALLY LABELED, FOR TWELVE

DIFFERENT METRICS.

Figure 4 depicts the encoder architecture used in DC-
VAE. The network architecture must be such that the
output values depend on all previous input values. The
length T of the sliding window plays a key role here, as it
must ensure that the output at t depends on the input at that
time and at {t−1, t−2, . . . , t−T+1}. The simplest way to
achieve this is to use filters of length F = 2 and DCs with
dilatation factor d = Fh, which grow exponentially with
the layer depth h ∈ [0, H − 1], where H is the number of
layers of the network. Subsequently, H is the minimum
value that verifies: T ≤ 2 ∗ FH−1. In the example, the
window length is T = 8, and the target is achieved by
taking H = 3 layers. This direct relationship between T
and the network architecture has a strong practical impact,
making it easy to construct the encoder/decoder, based on
the desired temporal-depth of the analysis.

Model training is conducted on top of normal-
operation data, to capture the baseline for anomaly detec-
tion. Once trained, the detection process runs continually,
rolling the sliding window of length T by a unitary-time
step. At each time t, the DC-VAE model takes as input
the matrix x ∈ RM×T , constructed out of the last T
samples observed in the MTS, and produces as output
matrices µx and σx – for notation brevity, we define
µ = µx and σ = σx. From these two output matrices,
the anomaly detection only considers their values at time
t, corresponding to two vectors µ(t) and σ(t). For each
of the univariate time-series m, an anomaly is detected at
time t if its value xm(t) falls outside the normal-operation
region, defined by µm(t) and σm(t). More precisely, an
anomaly in time-series m is declared at time t if:

|xm(t)− µm(t)| > αm × σm(t), (3)

where α = (α1, . . . , αm, . . . , αM ) is a vector of
M detection sensitivity thresholds, where each αm can
be set independently for each time-series, allowing for
fine-grained, per time-series calibration of the detection
process.

4. DC-VAE Evaluation and Benchmarking

4.1. The TELCO Dataset

A recent study [20] alerts on the limitations of eval-
uating anomaly detection algorithms on popular time-
series datasets such as Yahoo, Numenta, or NASA among
others. In particular, these datasets are noted to suffer
from known flaws such as trivial anomalies, unrealistic
anomaly density, mislabeled ground truth, and run-to-
failure bias. For this reason, we decided to evaluate DC-
VAE in a proprietary MTS dataset, corresponding to real
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(a) Prediction of time-series TS3.
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(d) Prediction of time-series TS12.

Figure 5. Example of time-series analysis through DC-VAE, for the
TELCO dataset, using T = 512 samples – almost 2 days of temporary
receptive field in the past.

measurements collected at an operation mobile ISP – we
are currently working on the possible public release of
this dataset to the community, but as of today, the dataset
is private. The TELCO dataset corresponds to twelve
different time-series, with a temporal granularity of five
minutes per sample, collected and manually labeled for a
period of seven months, between January 1 and July 31,
2021. Table 1 presents the main details of the dataset. Note
in particular how strongly imbalanced is the dataset in
terms of normal-operation and anomalous samples, which
is the typical case for real cybersecurity measurements
in operational deployments. By definition, anomalies are
rare events. We split the full dataset in three independent,
time-ordered sub-sets, using measurements from January
to March for model training, April for model validation,
and May to July for testing purposes.

4.2. Evaluation Results

Figure 5 shows DC-VAE in action, using a sliding-
window of length T = 512 samples, corresponding to
roughly two days of past measurements. This length of
time-window is the one providing better validation results
in the TELCO dataset. We take the same time-series
depicted in Figure 2 as reference, but now considering a
longer time span of four days. DC-VAE can properly track
different types of behavior in the time-series, including the
strong seasonal daily component, but also the operation
during weekdays and weekends, e.g., visible in Figure
5(d). In this example, time-series TS3 and TS9 are noisier
than time-series TS5 and TS12, which justifies the need for
different sensitivity thresholds αm to address the under-
lying nature of each monitored metric. Note in addition
how different periods of time-series variability result in
more or less tight normal-operation regions estimated by
DC-VAE, as defined by σ(t).

To apply DC-VAE for anomaly detection, we have
to calibrate the sensitivity thresholds α, which is usu-
ally done in a supervised manner, relying on the labeled
anomalies available in the training and validation datasets.
This step is the only one which requires certain level of
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Figure 6. Examples of real anomalies present in the analyzed dataset,
and their identification by DC-VAE.

“supervision” (in the sense of ground-truth availability),
but could also be done in a self-supervised manner, by
labeling anomalies through outlier detection techniques.
In our specific problem, each sensitivity threshold αm
is calibrated on a per time-series basis, by maximizing
the F1 score over the training and validation datasets,
doing a grid-search of integer values from 1 to 5. In a
nutshell, we decide how many standard deviations σm
shall be considered as tolerance for the normal-operation
variability of the data.

Figure 6 reports some examples of real (i.e., labeled)
anomalies present in the TELCO dataset, in particular for
time-series TS2 and TS4, along with their corresponding
identification by DC-VAE, where sensitivity thresholds α
were calibrated as mentioned before. DC-VAE can detect
different types of anomalies present in the data, of a more
transient and spiky nature in the case of TS4, or on a
more structural basis in the case of TS2. Note also how
some of the actual measurements fall significantly outside
the normal-operation region – e.g. in Figure 6(c), but
still these were not labeled as anomalous by the expert
operator. Whether or not this is a false-positive produced
by DC-VAE, or a non-labeled anomaly missed by the
expert operator is difficult to know.

Here it is important to note that anomalies in the wild
data, as reported and labeled by the expert operator, do
not always translate into clear outliers in the data; the
contrary is also true, meaning that typical outliers in the
data might not correspond to actual anomalies, at least in
the eyes of the expert operator. Manual data labeling by
experts is prone to human error, many times due to lack
of conclusive information available to the operator to take

a proper decision. These observations are actually critical
to consider when evaluating anomaly detectors with real,
in the wild data. As a relevant note in this direction,
such complexities in the process of properly labeling data,
and its interaction with the actual performance of the
AI/ML data-driven model, have originated a pretty novel
discipline referred to as Data-centric AI (DCAI) [21],
which studies the problem of systematically engineering
high-quality datasets to train machine learning models.

We also run a quantitative performance analysis of
DC-VAE in the testing dataset (cf. Table 1). As per-
formance metrics, we consider an elaborated version of
the traditionally used, per-sample evaluation metrics, to
consider a more natural and practical approach for real
anomaly detection applications, evaluating detection per-
formance in the form of anomaly temporal-ranges. Tradi-
tional metrics can make sense for point anomalies where
a true positive corresponds to a correct detection at the
precise point in time. However, as shown for example in
Figure 6(b), many anomalies occur in the form of multiple,
consecutive point anomalies, defining an anomaly range.
In such scenarios, it could be already enough to have a
partial overlap between the real anomaly range and the
predicted anomaly interval to consider a correct detec-
tion. Previous work have considered these observations
[22]–[24], defining new metrics which prioritize early or
delayed detection, or focusing mainly on range anomalies.
We therefore take the extended definitions of recall and
precision as defined in [24] to generalize for ranges of
anomalies, considering a correct detection if at least one
of the samples between the start and the end of the
actual anomaly are flagged by the model. We refer to
these extended, range-based metrics as Rr, Pr, and F1r,
for recall, precision, and f1-score, respectively. Finally,
evaluations are reported independently for each to the
twelve time-series TSm in the TELCO dataset.

To show the advantages of DC-VAE as compared to
the usage of standard, vanilla VAEs for anomaly detection
in time-series, we define the Standard-VAE (S-VAE) as
a snapshot-input-based anomaly detection model, where
the encoder/decoder architecture is based on a standard 3-
layers, fully connected feed-forward neural network, and
the input corresponds to the MTS at the specific time of
detection – i.e., T = 1 in S-VAE. Table 2 reports the
corresponding results in the testing dataset, independently
for each time-series, and as an average value. The first
observation is that achieved results are in general rather
poor, achieving F1r scores around 60% for eight out
of the twelve time-series, and below for the rest. This
is highly in contrast with the high F1 scores usually
reported in the literature, when dealing with simulated or
flawed datasets [20]. Indeed, as we explained before, deal-
ing with in-the-wild measurements and human-labeled,
highly-imbalanced datasets is more complex than what the
results in the literature usually report – real, in practice
MTS anomaly detection is highly complex. Performance
is significantly different for some of the time-series, which
corresponds to the different nature and underlying behav-
ior (cf. Figure 5). Nevertheless, the outperformance of
DC-VAE as compared to S-VAE is outstanding, largely
improving both detection of anomalies (i.e., Rr) as well
as overall performance (i.e., F1r), by almost a factor of
two on average.



S-VAE DC-VAE
TS ID Rr Pr F1r Rr Pr F1r

TS1 23% 56% 32% 58% 71% 64%
TS2 16% 92% 27% 74% 20% 67%
TS3 71% 50% 59% 86% 47% 60%
TS4 63% 25% 36% 63% 21% 32%
TS5 50% 20% 29% 75% 50% 60%
TS6 14% 100% 25% 57% 83% 68%
TS7 45% 100% 63% 72% 90% 80%
TS8 57% 35% 43% 44% 80% 57%
TS9 6% 4% 4% 17% 11% 13%
TS10 39% 81% 52% 52% 59% 55%
TS11 67% 17% 27% 100% 25% 40%
TS12 0% 0% 0% 100% 11% 22%

mean 38% 48% 33% 67% 47% 52%
median 42% 43% 31% 68% 49% 59%

TABLE 2. ANOMALY DETECTION PERFORMANCE WITH DC-VAE
AND S-VAE.

A preliminary assessment on the low performance
obtained for some of the time-series reveals issues linked
to poor labeling in some cases, as well as lack of sensitiv-
ity in some others (i.e., finer-grained α values might be
needed). Still, DC-VAE results in terms of its modeling
and tracking capabilities for multivariate time-series data
are promising, and its application to real measurements
additionally permits to evidence the difficulties behind a
broadly studied, yet unsolved problem. A deeper evalua-
tion of DC-VAE in the TELCO dataset is part of our on-
going work, including the benchmarking of other anomaly
detection approaches in this dataset.

5. Concluding Remarks

DC-VAE is a novel approach to anomaly detection in
multivariate time-series, leveraging dilated convolutional
neural networks and variational auto encoders. DC-VAE
detects anomalies in multivariate time-series, exploiting
temporal information without sacrificing computational
and memory resources. In particular, instead of using
recursive neural networks, large causal filters, or many
layers, DC-VAE relies on dilated convolutions to capture
long and short term phenomena in the data, avoiding
complex and less-efficient deep architectures, simplifying
learning. The application of DC-VAE to real measure-
ments collected at a mobile ISP showed that its underlying
architecture is better than traditional, vanilla VAEs when
it comes to time-series anomaly detection, showing as
such promising results. The parametrization of DC-VAE’s
architecture is basically defined by a single parameter,
namely the length of the sliding window used for tem-
poral analysis, and the normal operation region can be
easily adapted on a per time-series basis by adjusting a
single integer value, all of these important advantages in
practice. We are currently evaluating DC-VAE on top of
publicly available datasets recently put into question by
the research community, from what we expect to realize
state-of-the-art detection performance; this should help us
demonstrating that anomaly detection in real data as the
one considered in this paper, dealing with the error-prone
process of human labeling, is actually much more complex

than what the literature usually reports on such bench-
marks. The exploration of the data-centric AI domain
and its application to the problem of anomaly detection
in in-the-wild multivariate time-series data looks like a
promising venue to improve the field. We are working
together with the mobile ISP originating the TELCO
dataset to release it to the community in the short future.
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