Por favor, use este identificador para citar o enlazar este ítem: 
                
           
                 
                
    
    https://hdl.handle.net/20.500.12008/30548 
                
                
                Cómo citar
                | Título: | Human activity recognition using machine learning techniques in a low-resource embedded system | 
| Autor: | Stolovas, Ilana Suárez, Santiago Pereyra, Diego De Izaguirre, Francisco Cabrera, Varinia  | 
| Tipo: | Preprint | 
| Palabras clave: | Human Activity Recognition, Acceleration Sensor, Linear Discriminant Analysis, Support Vector Machines | 
| Fecha de publicación: | 2021 | 
| Resumen: | Human activity recognition aims to infer a person’s actions from a set of observations captured by several sensors. Data acquisition, processing and inference on edge devices add a complexity factor to the task, as they involve a trade-off between hardware efficiency and performance. We present a prototype of a wearable device that identifies a person’s activity: walking, running or staying still. The system consists of a Texas Instruments MSP-EXP430G2ET launchpad, connected to a BOOSTXL-SENSORS boosterpack with a BMI160 accelerometer. The designed prototype can take acceleration measurements, process them and either transmit them to a computer or classify the activity in the microcontroller. Additionally, our system has LEDs to display coloured signals according to the inferred activity in real-time. The classification algorithm is based on the calculation of statistical features (mean, standard deviation, maximum and minimum) for each accelerometer axis, the application of a dimensionality reduction algorithm (LDA, Linear Discriminant Analysis) and an SVM (Support Vector Machines) classification model.  | 
| Editorial: | Udelar.FI. | 
| EN: | IEEE URUCON 2021, Montevideo, Uruguay, 24-26 nov 2021, pp. 1-5. | 
| Financiadores: | Este trabajo fue parcialmente financiado por la Comisión Académica de Posgrado (CAP, UdelaR), Espacio Interdisciplinario (EI, UdelaR) y la Comisión Sectorial de Investigación Científica (CSIC, UdelaR) “Proyecto I + D : Sistema electrónico para la caracterización del comportamiento de ovinos". | 
| Citación: | Stolovas, I., Suárez, S., Pereyra, D. y otros. Human activity recognition using machine learning techniques in a low-resource embedded system [Preprint]. Publicado en : IEEE URUCON 2021, Montevideo, Uruguay, 24-26 nov 2021, 5 p. | 
| Departamento académico: | Electrónica | 
| Grupo de investigación: | Microelectrónica | 
| Licencia: | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | 
| Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica | 
Ficheros en este ítem: 
| Fichero | Descripción | Tamaño | Formato | ||
|---|---|---|---|---|---|
| SSPDC21.pdf | Preprint | 579,27 kB | Adobe PDF | Visualizar/Abrir | 
Este ítem está sujeto a una licencia Creative Commons  Licencia Creative Commons