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Abstract—Human activity recognition aims to infer a per-
son’s actions from a set of observations captured by several
sensors. Data acquisition, processing and inference on edge
devices add a complexity factor to the task, as they involve
a trade-off between hardware efficiency and performance.
We present a prototype of a wearable device that identifies
a person’s activity: walking, running or staying still. The
system consists of a Texas Instruments MSP-EXP430G2ET
launchpad, connected to a BOOSTXL-SENSORS boosterpack
with a BMI160 accelerometer. The designed prototype can take
acceleration measurements, process them and either transmit
them to a computer or classify the activity in the microcon-
troller. Additionally, our system has LEDs to display coloured
signals according to the inferred activity in real-time. The
classification algorithm is based on the calculation of statistical
features (mean, standard deviation, maximum and minimum)
for each accelerometer axis, the application of a dimensionality
reduction algorithm (LDA, Linear Discriminant Analysis) and
an SVM (Support Vector Machines) classification model.

Index Terms—Human Activity Recognition, Acceleration
Sensor, Linear Discriminant Analysis, Support Vector Ma-
chines.

I. INTRODUCTION

The acquisition and interpretation of signals from hu-
man activity monitoring have been of special interest for
scientific research and development over the last decades.
The ability to analyse different circumstances and make
decisions based on their correct interpretation has improved
society’s lifestyle. Human movement has contributed to
the treatment of many mobility-impaired disorders, such
as osteoarthritis, multiple sclerosis and Parkinson’s disease
[1], fall detection [2], fitness applications [3] and beyond.
These applications use accelerometers connected to devices
with varying degrees of wearability, from smartphones [2]
to waist-mounted devices [4].

This work aims to prototype a system that applies ma-
chine learning techniques for human activity recognition in
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an embedded system, performing real-time inference in a
microcontroller. The main challenge and motivation are to
align two seemingly opposite disciplines: the development
of low-resource embedded software and machine learning
algorithms for activity inference. The first one is related
to electronics field in terms of optimising memory usage
and power consumption, whereas the second one is often
supported by a large amount of data combined with an
important processing unit and storage.

Related work has been done in machine learning for
applications on edge devices with varying degrees of com-
plexity. The developed models include Decision Trees, Neu-
ral Networks, Naive Bayes, Linear Discriminant Analysis
(LDA), Quadratic Discriminant Analysis (QDA), k-Nearest
Neighbours and Supporting Vector Machines (SVM) ( [1],
[5], [6]).

We are strongly based on [7], which performs LDA for
dimensionality reduction, and [8] adds SVM for classifica-
tion. These algorithms are described in detail in section II-B.
In contrast to [9], the designed system successfully classifies
the activity performed by the user with no need for external
(remote) processing.

II. METHODS

The following sections describe the approach used to
implement an accurate human activity recognition system
using machine learning techniques on a microcontroller in
real-time.

A. Proposed Solution

The physical system is designed to be wearable by a
human being to classify the activity being done by the user in
real-time. The MSP430G2553 microcontroller plugged into
an MSP-EXP430G2ET launchpad (from Texas Instruments)
allows quick prototyping while providing enough process-
ing capabilities. A BOOSTXL-SENSORS Texas Instrument
boosterpack provides 3-axis acceleration measurements by
including a BMI160 Bosch Inertial Measurement Unit. A
16KB flash memory and 512 bytes RAM are available.



Fig. 1: Proposed solution. Data acquisition and preprocess-
ing are the same for both operation modes. Features go to
PC for data collection mode, whereas user mode classifies
the activity and displays the result on the LEDs.

The activities to be classified are: running, walking and
staying still. Daily activities detectable insight are important
for validation purposes. Moreover, to help validation, three
LEDs (included in the launchpad) indicate which activity
the system is recognising with obtained data. Each LED
indicates a different activity when turned on.

This system uses a machine learning algorithm, so a
database is required to train it. This database was created
by acquiring accelerometer data, extracting characteristics on
the microcontroller and sending them to a PC for training.

The system has two operational modes, one for training
and one for classifying. Data gathering happens in data
collection mode, while the real-time classification and LED
display occurs in User mode. Figure 1 shows a functional
system description.

Some elements are shared between both modes. As an
example, the raw acceleration data is sampled at a frequency
of 100Hz from the accelerometer in both modes. The
sampling frequency was chosen in accordance to [7]. These
measurements are sent one at a time to the microcontroller
via the I2C protocol at a frequency of 100 kHz, allowing
the message to be sent completely from the boosterpack to
the microcontroller before next sample is taken.

Furthermore, once a data sample has reached the micro-
controller, a preprocessing step begins. The data samples
information is accumulated until the information correspond-
ing to a time window of 256 data samples is reached. A
detailed explanation of this process is presented in section
II-C.

Once the samples are preprocessed, statistically significant
features are extracted for each axis. These features comprise
the mean, standard deviation, maximum and minimum,
totaling twelve features from [7] within the machine learning
algorithm’s single input data vector.

In data collection mode, these features will be sent to a
PC via UART, at a baud rate of 9600 bps, and a Python-
written program receives and stores features in a comma-
separated values (csv) file. Two hundred feature vectors were
collected for each activity in order to train the algorithm.
In user mode, features are used to classify the activity the
user is doing at the time, and display the results in the LEDs
system.

B. Activity Recognition

Once the data has been collected and properly labelled,
a supervised machine learning algorithm is trained. In this
case, the employed algorithm combines a dimensionality
reduction technique and a linear classifier. Linear Discrim-
inant Analysis (LDA) performed dimensionality reduction.
Support Vector Machine (SVM) did low-dimension classi-
fication. In the relevant literature, LDA is described both
as a dimensionality reduction technique [10] and as a
classification algorithm [7]. In this work, LDA is used only
as its dimensionality-reduction version.

1) LDA: This algorithm finds the optimal subspace in
which to project the original data. Each data point is
represented by a d-dimensional input feature vector x =
[x1, x2, ..., xd]

t associated with a class k ∈ {1, 2, ..., C}.
Finding a subspace in which to project this data is equivalent
to computing a projection matrix W, so that y = Wtx is
in the desired subspace for every point in the original space.

The constraints on the matrix W define what should be an
optimal projection. For LDA, these constraints imply that the
projected means of all the classes should be as far as possible
from each other (maximising their variance) and that the
projected data points of the same class should be as close as
possible (minimising their variance). Both constraints form
a maximisation problem:

max
w:‖w‖=1

wtSbw

wtSww
(1)

Finding the solution to this problem yields a direction
in which to project the original, high-dimension data. If
more project directions are required, the general form of
the solution allows selecting other specific directions.

Both Sb and Sw can be functions of the original data in
the following way:

Sb =

C∑
j=1

nj(mj −m)(mj −m)t (2)

It can be seen that equation 2 has the form of a Rayleigh
quotient, which has as a solution the eigenvector correspond-
ing to the largest eigenvalue of S−1w Sb. Furthermore, more
eigenvectors from the matrix S−1w Sb can be used, if more
than one direction is required. It is proven in [11] that this
matrix has at most, rank C − 1. Thus, we can project the
original data in C − 1 dimensions.

Finally, for LDA, it is proven in [10] that its time
complexity (for its usual implementation) is O(ndt + t3),
being n the number of samples, d the number of features
and t = min{n, d}. This may be computationally complex.
However, our solution only involves LDA for dimensional
reduction purposes, performing the projection inside the
microcontroller. As this is just a multiplication of a k × d
matrix (being k the number of dimensions selected to project
into) by a d-dimensional vector, this operation has a time
complexity of O(dk). Therefore, having a moderate size for
d and k makes adequate to implement this operation in the
microcontroller.
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Fig. 2: Main application flow

2) SVM: For the final stage of our activity recogniser,
an SVM model has been implemented to classify among
the three defined activities. SVM is a supervised machine
learning algorithm that aims to find the hyperplane best
separating two data classes. The optimal hyperplane can
be found by solving an optimisation problem, where each
boundary has a separating margin. Violating the margin
means a misclassification, which should be minimised. In
case more than two classes are present, a one-against-all
technique is applied. The model output has numerous deci-
sion boundaries for multi-class classification. The dimension
of the resulting hyperplane is d−1, with d the dimension of
the data (the number of features from the input space). For
the Python implementation, a linear kernel was used, with
an error control of C=1.

We applied the LDA model to 12-dimension feature
vectors, with a total of 3 classes. LDA can project the
original data on a plane (2D) or a line (1D). In the first case,
the decision boundary is a line (2 parameters: slope and y-
intercept), and in the second is just a point. Both models
were trained in Python using the Scikit-learn [12] library.
The data collected via UART was received and stored on a
data frame for the training purpose. Fitting the LDA model
results on a projection 12x2 matrix, easy to store in the
microcontroller flash memory. SVM learnt parameters were
also stored to use as a classification threshold in the edge
device.

C. Embedded Software

The main application implements a Round Robin with
Interrupts architecture. The microcontroller receives data
from the accelerometer to process and classify activities
generating a LED output, as shown in figure 2.

The most relevant developed modules are the following:
• Data acquisition. This module is responsible for the

communication between the accelerometer and the mi-

crocontroller. It supports I2C protocol and makes use
of the BMI160 sensor driver [13]. The sensor sampling
rate is set to 100Hz for a range of ±4 g.

• Feature calculation. When receiving data from the
accelerometer, relevant information should be stored
to compute the statistical features. As mentioned in
section II-A, the statistical features computed from the
raw accelerometer data are minimum, maximum, mean
and standard deviation. These features are extracted
from a time window corresponding to 256 samples. The
design choice for the window length was based on [14],
considering that 2 seconds of sampling is sufficient
for an optimal trade-off between recognition speed
and accuracy. Considering that hardware resources are
limited, estimators of the statistical features were used
to allow partial calculations each time a data sample
was received from the accelerometer, avoiding storing
all sampled data. These estimators are:

âmax = max
n
{an} âmin = min

n
{an} (3)

µ̂a =
1

N

N∑
n=1

an (4)

σ̂a =

√√√√ 1

N

N∑
n=1

a2n −

(
1

N

N∑
n=1

an

)2

(5)

Maximum and minimum values are updated for each
accelerometer sample. The axis sum and square-sum
are updated, and when a full-time window is sampled,
the estimators are computed.

• Classification. The train parameters mentioned in sec-
tion II-B are hard-coded in the flash memory: the
projection 12x2 matrix for dimensional reduction and
SVM coefficients determining the decision boundary
for classification. The inference is achieved simply by
multiplying the computed features by the LDA matrix
and thresholding the result by the SVM.

Other modules not mentioned above were implemented to
send the statistical features to the PC for training (in Data
collection mode), handling UART protocol.

III. RESULTS AND DISCUSSION

The system is designed to be tied to the right side of
the user’s abdomen. For data collection mode, the system is
connected to a laptop -carried in a backpack- via a micro-
USB to USB cable (figure 3a). For user mode, the launchpad
is connected to a powerbank (figure 3b).

The BMI160 acceleration measurements are read from
the microcontroller successfully and correctly preprocessed
within the time constraints the system had (100Hz sampling
rate).

A projection matrix was obtained by training the LDA
algorithm, transforming the data into two dimensions. This
projection is shown in figure 4a. Because the data clusters
are significantly split, we decided to use only one dimension
to project the original data into (figure 4b). By these means,



(a) Data collection mode (b) User mode

Fig. 3: Physical system setup
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Fig. 4: LDA for activity classification. Blue: running, or-
ange: staying still, green: walking.

we would make the real-time processing faster, as the
computations required for classification would be cut in half.

The embedded software for user mode takes less than
6 KB flash memory and 240 B of RAM, less than half of
the available resources mentioned in section II-A. Besides,
a maximum current consumption of 712 µA was achieved
in user mode, excluding the LEDs, using low-power mode
feature.

Lastly, a successful classification was achieved by the
final system, tested on four individuals of different physical
appearance (varying height and body shape). We took four
minutes sampling for each activity, and video-recorded the
output LEDs. The confusion matrix is given in figure 5,
reaching an average precision of 97.92% and an average
recall of 97.93%. The fact that for staying still we performed
100% precision, and for running we reached 100% recall is
a concern. This could be because the training dataset was
exclusively comprised of young people. An older person
might run extremely similar to a young individual fast walk.
Then, results would indicate that samples are biased. Mis-
classification occurs to “lower movement” states (predicting
walking when running, and staying still when walking).
Precision, recall and F1-score metrics for each activity are
reported in Table I. The global values reported are the macro
averages of each metric.

IV. CONCLUSION

The designed prototype is able to successfully recognise
the performed activity through the inertial measurements
acquired with the accelerometer and processed in the mi-
crocontroller in real-time. An efficient algorithm was de-
signed to compute statistical features of the signal without

TABLE I: Classification metrics

Activity Precision Recall F1-score
Staying Still 0.9485 1.0 0.9736

Walking 0.9892 0.9485 0.9684
Running 1.0 0.9897 0.9948
Global 0.9792 0.9793 0.9789

Fig. 5: Testing results on classification performance.

requiring to store all acquisitions. With these features, an
activity database has been correctly built in a PC, training a
classification algorithm which was finally embedded in the
microcontroller.

The application of LDA and the identification of compar-
ison thresholds with SVM made it possible to achieve a suc-
cessful activity recognition by computing simple operations
on the microcontroller. Moreover, the classification results
visible with the LEDs are consistent and distinguished for
the selected activities: running, walking and staying still.

Future work would include more activities to recognise
(e.g., climbing stairs) for the performed prototype system.
Furthermore, the output LEDs could be replaced with a
lower power-consumption system feedback. In addition, the
dataset could be expanded, including individuals from differ-
ent age groups and characteristics. The system is intended
for a target public of young people, however, it could be
interesting to use our system with disabled or elderly people.
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