Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/30466
Cómo citar
Título: | The whole and the parts : The MDL principle and the a-contrario framework |
Autor: | Grompone von Gioi, Rafael Ramírez Paulino, Ignacio Randall, Gregory |
Tipo: | Preprint |
Palabras clave: | Model selection, Structure detection, MDL, A-contrario framework, Non accidentalness principle, NFA, Polygonal approximation, Line segment detection |
Fecha de publicación: | 2021 |
Resumen: | This work explores the connections between the Minimum Description Length (MDL) principle as developed by Rissanen, and the a-contrario framework for structure detection proposed by Desolneux, Moisan and Morel. The MDL principle focuses on the best interpretation for the whole data while the a-contrario approach concentrates on detecting parts of the data with anomalous statistics. Although framed in different theoretical formalisms, we show that both methodologies share many common concepts and tools in their machinery and yield very similar formulations in a number of interesting scenarios ranging from simple toy examples to practical applications such as polygonal approximation of curves and line segment detection in images. We also formulate the conditions under which both approaches are formally equivalent. |
Editorial: | arXiv |
EN: | Computer Science (cs.CV-Computer Vision and Pattern Recognition), arXiv:2112.06853, Dec. 2021, pp. 1-32. |
Citación: | Grompone von Gioi, R., Ramírez Paulino, I. y Randall, G. The whole and the parts : The MDL principle and the a-contrario framework [Preprint]. Publicado en : Computer Science (cs.CV-Computer Vision and Pattern Recognition), 2021, pp. 1-32. arXiv:2112.06853. |
Departamento académico: | Procesamiento de Señales |
Grupo de investigación: | Tratamiento de Imágenes |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
GRR21.pdf | Preprint | 5,75 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons