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Abstract. This work explores the connections between the Minimum Description Length (MDL) principle as
developed by Rissanen, and the a-contrario framework for structure detection proposed by Desolneux,
Moisan and Morel. The MDL principle focuses on the best interpretation for the whole data while
the a-contrario approach concentrates on detecting parts of the data with anomalous statistics.
Although framed in different theoretical formalisms, we show that both methodologies share many
common concepts and tools in their machinery and yield very similar formulations in a number of
interesting scenarios ranging from simple toy examples to practical applications such as polygonal
approximation of curves and line segment detection in images. We also formulate the conditions
under which both approaches are formally equivalent.
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1. Introduction. The Minimum Description Length principle (MDL), introduced by Ris-
sanen in 1978 [26] and further developed in [2, 18, 27, 28, 29], is an information-theoretic
approach to the statistical problem of Model Selection. The MDL principle was developed
as a practical, computable approach to the Algorithmic Information Theory developed by
Solomonoff [30, 31], Kolmogorov [22] and Chaitin [3, 4]. It was later significantly improved
by the development of Universal Coding Theory [6], a powerful generalization of the optimal
coding methods developed by Shannon, Fano, Elias and Huffmann.

The a-contrario detection theory was developed by Desolneux, Moisan and Morel [10, 11]
and is based on a statistical formulation of the non-accidentalness principle [1, 33]. Its aim
is to control the expected number of false detections under random conditions. Its rationale
is that events likely to arise by accident should not be considered meaningful detections and
must be rejected. In other words, only significant deviations from randomness are meaningful.

The theoretical and philosophical foundations of both approaches are very different. As
the name suggest, the Minimum Description Length principle follows the same basic idea of
Algorithmic Complexity, preferring the model that leads to the shortest description of the
whole data. The non-accidentalness principle, on the other hand, suggests rejecting events
that are expected to be observed in random data. The former considers a global description
whereas the latter concentrates on the detection of anomalous structures present in the data.

Despite their different formulations, both methods find common ground in one important
case: uniformly distributed random data (without loss of generality, over a finite alphabet).
According to Kolmogorov’s definition, the shortest description of such data will be as long as
the data itself with overwhelming probability. In other words, when the data is random, no
clever model can be devised which allows for a more compact description than spelling out
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the data itself. In MDL, such data is non-compressible and thus the best model is the uniform
distribution. In the context of a detection problem this constitutes a non-detection. As for
a-contrario, the non-accidentalness principle also guarantees that no detection will occur in
this scenario.

This work seeks to show that similarities between both approaches exist beyond the afore-
mentioned case. We demonstrate this in various examples, ranging from simple problems,
where we can perform an in-depth analysis of the expressions involved, to more complex real
applications where we show, by experimentation, that both methodologies indeed produce
very similar results. In particular, we develop and evaluate automatic methods to choose the
“best” polygonal approximation of a given object, and for detecting line segments, using both
criteria. Finally, we establish certain conditions under which both approaches are equivalent.

The MDL principle is mainly a model selection tool, but can also be used as a detection
criterion. On the other hand, the a-contrario framework was mainly proposed as a detection
criterion, but can also be used for model selection. Thus, both methodologies can be applied
to a large range of similar applications, facilitating the comparison. Also, both methodologies
require a modeling step. In all cases, from toy examples to real applications, our results show
that both a-contrario and MDL give very similar results whenever similar modeling criteria
are used.

The rest of this document is organized as follows. The basic common notation and concepts
are introduced in Section 2. Then, Section 3 provides a self-contained, concise introduction to
the MDL principle, starting with its Algorithmic Information Theory foundations, and the key
tools in Universal Coding Theory which enable its application in practice. Section 4 does the
same with the a-contrario theory. Section 5 compares both approaches in a first toy setting:
detecting an individual square on a noisy image. Section 6 moves to the more interesting
case of detecting many squares. Next, two more complex problems are addressed. Section 7,
deals with the selection of the best polynomial approximation to a curve; this is a typical
model selection problem for which MDL was specifically developed. Section 8, deals with
detection of line segments in images; this, in turn, is a typical computer vision application of
the a-contrario approach. Then, Section 9 establishes the theoretical conditions under which
both approaches are equivalent. Final comments and perspectives are given in Section 10 and
Section 11.

2. Notation, conventions and common concepts. In this brief preamble we summarize
the meaning of common terms and symbols used throughout the document. The object of our
study will be a data vector x = (x1, x2, . . . , xn) of length n where each xi takes values in a
finite alphabet X of size |X |; here | · | denotes the cardinality operator. Images will be treated
in the same way by concatenating their rows into a single vector. Without loss of generality,
we will assume that all images are of size

√
n×
√
n.

When the nature of x is assumed stochastic, X denotes the random vector associated to
it, and Xi represents the random variable corresponding to the i-th sample of x, xi.

All the examples of this work involve analyzing parts of the (whole) data vector x. We
define a part xi of x to be an arbitrary non-empty subset of elements of x: xi = {xj1 , . . . , xjni}
where jk are the indexes of the elements and ni is the size of the part. In general, we may
analyze several different parts of the data simultaneously. Let {x1, . . . ,xN} be a set of N
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parts of x in which we are interested. This set of parts is not necessarily a partition: it does
not need to cover the whole x, and different parts may overlap. For example, if x is an image,
the parts {xi : i = 1. . . . , N} may correspond to a group of selected (possibly overlapping)
patches. For a particular part, the value of xi will vary for different realizations of x. We say
that a configuration is a particular realization of a given part. If x is stochastic, Xi represents
the random vector associated to part xi.

Parts are the subject of the tests conducted in this work. When dealing with detection
problems, our goal will be to determine whether a part stands out from the background or not.
In that case, we declare a detection. Otherwise, no detection is declared. In such scenarios, a
“background” model is assumed. This can be, for example, a distribution on x, such as the
uniform distribution over X n. In general, we associate a model to an hypothesis. In the case
of detections, the background model is associated to the null hypothesis H0 (i.e., the part is
part of the background), and the non-null hypothesis H1 corresponds to a detection.

In model selection problems, many different models (hypotheses) are proposed for a given
part; the background model (null hypothesis) is always included among these. Note that, as
formulated, the detection problem is a special case of a model selection problem where only
one non-null hypothesis is formulated.

In any case, the decision on a part is made by computing a score for each model and
selecting the one with the best score. A score is a function of the model, the part, and
its configuration. However, how exactly this score function is constructed depends on many
factors. Most of the technical work in this paper is devoted to constructing this function.

3. The Minimum Description Length principle. The Model Selection problem can be
stated as follows: which is the best model to describe a given data? This is a fundamental
problem in Statistics and Science as a whole. In its most general formulation (any possible
model), this problem is unsolvable [22, 24]. Therefore, the effort has been focused on selecting
the best model from sets of structured candidates.

The Minimum Description Length [18] has its philosophical roots in the famous “Occam’s
Razor” principle, whose modern interpretation can be summarized by saying that, being
equally precise, simpler explanations should be preferred over complex ones. To weight dif-
ferent explanations, MDL draws from the theory of Algorithmic Complexity (also known as
Kolmogorov complexity) [24]. This theory, developed independently by Solomonoff [30, 31],
Kolmogorov [22] and Chaitin [3, 4], states that the complexity of a data object is given by
the shortest program that can describe it using a Universal Turing Machine.

In accordance with the unsolvability of the general Model Selection problem, it has long
been shown that finding the shorter program to describe a given data is a non-computable
problem [34]. In view of this difficulty, the MDL principle reduces its search to a set of
candidate descriptions that are easy to evaluate: this is usually a family M of parametric
probability models and a method for compressing data using these models. In short, given
some data, MDL will choose the model M ∈M which, when fed to the compression algorithm,
yields the shortest description for that data. The choice of the family of models M for a
particular problem is the modeling step.

GivenM, the problem of designing an algorithm which will produce the shortest possible
description of any given data using the available models in M is non-trivial. This is the
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subject of Universal Coding Theory (UC) [6]; much of the literature on MDL deals with
the design and implementation of such algorithms. Whereas the traditional (pre-Universal)
Coding Theory deals with developing compression algorithms for sources with fully known
probability distributions, UC deals with the problem of encoding data whose distribution
is assumed known only in its general form (e.g., “a polynomial plus Gaussian noise” or a
“Markov Process of arbitrary order”).

More Formally, let M = {Mθ : θ ∈ Θ} be a family of probability models defined over x
indexed by a parameter θ. We denote by LM(x|Mθ) the code-length assigned by model Mθ

to x. To produce a complete description of x, Mθ needs to be encoded as well; we denote the
joint encoding of x and Mθ given the family as LM(x,Mθ) (the familyM is unique and known
both to the encoder and the decoder, so there is no need to describe it when transmitting x):

(3.1) LM(x,Mθ) = LM(x|Mθ) + LM(Mθ).

The two terms in (3.1) play the role of a fitting term and a penalty term, respectively, in
traditional regularization methods. It is not necessary to actually encode the data in a binary
stream; only code-lengths matter. However, the code-length assignments need to be valid.
A central theorem in Information Theory (see [6]) establishes that any valid code-length
assignment needs to satisfy the Kraft inequality [8]:∑

x∈Xn
2−LM(x,Mθ) ≤ 1.

The main problem with the original (called “two-parts”) formulation of MDL [26] is the
arbitrariness in separating LM(x,Mθ) into LM(x|Mθ) and LM(Mθ); as soon as one wants to
describe the model parameter θ, one faces the problem of choosing a model for θ itself.

A fundamental development in MDL was the incorporation of tools from the Universal
Coding, which allow for a provably optimal, one-part encoding of x directly in terms of
the whole family M: LM(x). In these schemes, the parameter θ is “marginalized-out”. A
fundamental result [27] states that LM(x) can still be decomposed into two terms (not to be
confused with the two-parts coding mentioned earlier):

LM(x) = L(x|M) + L(M).

The term L(M) is called Model Complexity and depends solely on the size and richness of the
model itself: larger model families are inherently more complex and thus result in a larger,
unavoidable overhead, no matter the encoding in use. The term L(x|M), called Stochastic
Complexity, depends on the particularities of the data x to be encoded. Again, these two terms
play the roles of regularization and fitting terms, even though the division is not explicit.

The proper application of modern MDL requires one to develop an optimal one-part coding
scheme. In many cases, however, such schemes are impractical to implement, and one must
settle for an imperfect two-parts coding approach. In such cases (besides complying with the
Kraft inequality), the only sanity check is that the actual code-lengths produced are better
than those obtained by a trivial, raw encoding for the data that one is working with (e.g.,
if one wants to encode digital images of n pixels with 8 bits per pixel, a useful code should
produce code-lengths well below 8n bits for most images).
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4. The a-contrario framework. The a-contrario framework was introduced by Desolneux,
Moisan and Morel [10, 11] as a general way of selecting detection thresholds while controlling
the number of false detections under a background or null hypothesis H0. It can be seen
as a formalization of the non-accidentalness principle [1, 33] which states that an observed
structure is meaningful only when the relationship between its elements is too regular to
be the result of an accidental arrangement of independent elements. The idea is illustrated
informally in the following passage:

For so many people connected with the Armstrong case to be travelling by the
same train through coincidence was not only unlikely: it was impossible. It
must be not chance, but design.
Agatha Christie, “Murder on the Orient Express”

or even in the more concise words of Ian Fleming in “Goldfinger”: Once is happenstance.
Twice is coincidence. The third time it’s enemy action. Both quotes suggest the idea that a
large number of coincidences implies a common cause. D. Lowe expressed the same idea more
formally in the context of pattern detection in digital images:

we need to determine the probability that each relation in the image could have
arisen by accident, P (a). Naturally, the smaller that this value is, the more
likely the relation is to have a causal interpretation.
David Lowe [25, p. 39]

The same idea is the basis of hypothesis testing in statistics.
The a-contrario approach aims at detecting parts of the data with anomalous statistics.

The a-contrario formulation requires: (a) a family of events or parts to be analysed; (b) a
function ξ(xi) providing the degree of anomalousness of a data part xi; (c) a stochastic model
H0 for random data. The latter determines the distribution of random data, which in turn
allows to evaluate whether a given event is common or rare.

The function ξ acts on parts xi and produces a real number yi = ξ(xi). This function
introduces an order among all possible configurations of xi, determining the sense in which a
vector will be considered anomalous. A vector with a large enough yi value will be considered
anomalous. To give an example, in an image, patches with large average pixel values may
be considered anomalous. Finally, a stochastic model H0 is required for background data;
a piece of data xi will be considered anomalous when observing the value yi = ξ(xi) or a
larger one is a rare event under H0. In some settings, there is a natural stochastic model H0

for unstructured data; we will see some examples later. In the absence of particular reasons
to specify a model H0, we can follow Laplace’s principle of indifference and assume that all
possible realizations of the data vector are equally probable under H0. Correspondingly, let
Xi denote the random vector associated with a part xi and Yi = ξ(Xi).

We are now ready to introduce the main ideas of the a-contrario approach. The formalism
is based on a multiple test procedure as used in statistics [20] and is very similar to the
procedure in [13]. We want a criterion F such that detections are declared when F (i, yi) ≤ ε
for a fixed value ε. The main idea of the a-contrario approach is to design F to control the
expected number of detections under H0; i.e., when F is applied to random variables Yi. In
such conditions, any detection would be a false detection. Here, we will follow the formulation
introduced in [17].
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Definition 4.1 (Grosjean-Moisan [17]). Let {Y1, . . . , YN} be a set of N random variables.
A function F (i, y) is a NFA (Number of False Alarms) for the random variables {Yi} if

(4.1) ∀ε > 0, E

[
N∑
i=1

1F (i,Yi)≤ε

]
≤ ε.

In words, the condition in Equation (4.1) implies that the expected number of random variables
satisfying F (i, Yi) ≤ ε is bounded by ε; this condition is equivalent to

(4.2)

N∑
i=1

P
(
F (i, Yi) ≤ ε

)
≤ ε.

A function F satisfying Definition 4.1 ensures that the average number of false detections
under H0 is less than ε. Thus, a NFA allows controlling the global number of false detections
by making detections only when F (i, y) ≤ ε for the observed value y.

Proposition 4.2 (Grosjean-Moisan [17]). Let {Y1, . . . , YN} be a set of N random variables
and {η1, . . . , ηN} a set of positive real numbers such that

(4.3)

N∑
i=1

1

ηi
≤ 1.

Then, the function

(4.4) F (i, y) = ηi · P[Yi ≥ y]

is an NFA.

The condition
∑N

i=1
1
ηi
≤ 1 allows to apply a different confidence level ε/ηi to each test

while still controlling the average number of false detections by ε. In short, a detection will
be declared in part xi if

(4.5) NFAi = ηi · P
[
ξ(Xi) ≥ ξ(xi)

]
≤ ε,

where ε is a fixed value indicating the average number of false detections one is ready to accept
when x is a realization of X ∼ H0. In particular, setting ηi = N for all i (which corresponds
to the Bonferroni correction in multiple test settings), assigns the same risk ε/N to each test,
while keeping the average number of false detections below ε. In many practical applications
the value ε = 1 is adopted. Indeed, it allows for less than one false detection per data (for
example an image), which is usually quite tolerable.

A few comments are now in place. First, we are following the setting of Section 2, so the
elements of x take values in a finite alphabet X , and thus x ∈ X n. But the same a-contrario
framework is well-defined with, for example, real valued vectors.

The second comment is about the functions ξ. We mentioned a single function ξ to be
applied on all parts {x1,x2, . . . ,xN}. However, the framework can use a different function ξi
for each part xi, leading to variables yi = ξi(xi) and random variables Yi = ξi(Xi) under H0.
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A simple case where this is useful is when analysing different kind of parts, each requiring
a different evaluation; for example, some parts may be patches of the image, while other
parts may correspond to region boundaries in the image. Moreover, it is sometimes useful
to compare alternative interpretations for a given data part; that is, to evaluate two or more
kinds of anomaly that may be present in a data part. This is how a-contrario can handle
Model Selection. Formally, a part vector can be duplicated, such that xi and xj correspond
to the same data, but the observed functions ξi and ξj are different, resulting in different tests.
For example, the same image patch may be evaluated as an anomalous bright regions or as
an anomalous dark region. The interpretation which is more anomalous relative to H0, which
is reflected in a smaller NFA value, is the one to be selected.

A last comment concerns the cardinality of the family of parts. Up to now, we assumed a
finite number of parts N . However, the framework can be extended to the case of countable
infinite number of tests, provided that

∑∞
i=1

1
ηi
≤ 1.

To summarize, in order to apply the a-contrario detection paradigm, three ingredients
need to be provided: (a) the family of parts (or events or tests) to be evaluated, together
with the risk distribution ηi; (b) a function ξ defining an observed quantity; (c) a probabilistic
model for the background or null hypothesis H0. Of course, each of these three components
needs to be worked out for a particular problem. The choice of these three components is a
modeling step.

5. Detecting a square on a noisy image. Our first experiment is purposely simple and
will serve two objectives: first, to introduce the technical aspects of both MDL and a-contrario
methodologies; second, to provide a setting that is simple enough to be compared analytically
and where intuition can be easily developed.

Our object of study is a square image x of size
√
n×
√
n with n pixels. The image x is

binary: its elements xij ∈ {0, 1} for all i, j. The image is subject to noise, in the sense that
the observed pixels of x are the result of an underlying, unobservable image whose pixels are
flipped independently with an unknown probability 0 < δ < 1. Figure 1 illustrates the setting.

The task is to determine whether a square is present in the underlying unobserved image
based on the noisy observation x. Cast as a detection problem we have two hypothesis: if
there is no square, the underlying image pixels are all 0’s and the observed 1’s are due to some
of these 0’s being flipped into 1’s by noise; if a square of size

√
n1×
√
n1 is indeed present, its

unobserved pixels will have a value of 1. If present, the size n1 of the square as well as its
position on the image are also unknown.

If the square is sufficiently large, we expect roughly n1(1 − δ) pixels to be 1, and n1δ
pixels to be 0. Correspondingly, the n − n1 background pixels should consist of roughly
(n−n1)(1− δ) 0s and (n−n1)δ 1s. If δ < 0.5, these two quantities should be distinguishable.
Actually, if δ > 0.5 the same thing would happen, but the background would be darker than
the foreground. Therefore, w.l.o.g., we consider error probabilities 0 < δ < 0.5 hereafter.

Note that a complete computer vision application usually includes two distinct stages:
the first one produces a set of feasible candidates using some heuristic, and the second one
validates the candidates, either jointly or separately, using some significance criterion. As we
are interested in the latter problem, in this and all the following experiments, we assume the
set of candidates to be fixed and given to us.
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Figure 1: Images used in the single square setting. Noise level increases upward, whereas
square size increases from left to right. At a glance, one can clearly see the squares in the
center and lower images of the grid. The smaller the square, the faster it vanishes upward.
This also happens when the square is too large, as the rim is confounded with the square.

We will now work out the aforementioned detection problem using both frameworks.

5.1. MDL detection of a noisy square. In order to formulate the square detection prob-
lem under the MDL framework we consider the task of encoding the binary image x under
two different hypothesis: the null hypothesis H0, and the non-null hypothesis H1. Each will
result in a corresponding theoretical code-length: L0 or L1. The task now is to compute these
values for the given image x.

Under the null hypothesis, the unobserved image is all 0s and the observed image is the
result of some of these 0s being flipped to 1 independently and with unknown probability δ.
The observed image x is therefore an i.i.d. Bernoulli process X where P(Xi = 1) = δ. One

8



possible universal code for this case is the so-called Enumerative Coding [7]. This is a two
parts code where the first part uses log n bits (if not specified, logarithms are in base 2) to
describe the number k of ones in x, and the second part gives the position of x within the
lexicographical list of all sequences of length n with k ones; this requires log

(
n
k

)
bits:

(5.1) L0 = log n+ log

(
n

k

)
.

In order to compute L1, we assume that the unobserved image contains a single square of
size n1 =

√
n1 ×

√
n1 1s whose upper-left corner is located at some arbitrary position (i, j).

The observed image x is the result of flipping those unobserved pixels independently with
unknown probability δ. Let k1 be the number of 1s inside the square, k0 = k− k1 the number
of 1s outside the square, and n0 = n − n1 the number of background pixels. Given this
information, we treat both, background and square, as two independent Bernoulli sequences:
the background with parameter q0 = k0/n0, and the square with parameter q1 = k1/n1. The
resulting code-length is the concatenation of two codes, both analogous to L0, plus log n bits
for describing the location of the square, and 0.5 log n more bits to describe the square side:

(5.2) L1 =
3

2
log n+ log n0 + log

(
n0
k0

)
+ log n1 + log

(
n1
k1

)
.

The hypothesis H1 is selected when L1 < L0. We can express this condition by defining
the MDL score, MDL = L1 − L0,

(5.3) MDL =
3

2
log n+ log n0 + log

(
n0
k0

)
+ log n1 + log

(
n1
k1

)
− log n− log

(
n

k

)
.

A positive detection is declared when MDL < 0. As a final note, we remind the reader that
this is not the only possible MDL formulation for this problem; just a reasonable one.

5.2. A-contrario detection of a noisy square. In the a-contrario framework, a test is
defined for each possible structure to be detected or part evaluated; in our case each possible
square in the image is a part and defines a test. Then, a random variable is associated to each
test and an NFA is defined according to Definition 4.1. Using Proposition 4.2, NFA = N P(ω),
where N is the number of tests and P(ω) is the probability of observing the event ω under
the null hypothesis (usually called the background model). A detection is declared when the
NFA value for a given event ω is below a certain threshold ε; the a-contrario setting ensures
that the average number of false detections under H0 is controlled by ε.

As for the number of tests N , there are two unknown quantities that determine each
candidate structure in the current problem: the size of the square, n1, and its location within
the image, which can be specified by the linear index of the upper-left corner. For an

√
n×
√
n

image we have n possible positions and
√
n possible values for n1. This gives N = n3/2 tests.

We assume the same null hypothesis H0 as in the MDL formulation described before,
i.e., the pixel values are independent Bernoulli random variables with probability δ. The
parameter δ is unknown, but can be estimated as the empirical density of 1s in the image.
Likewise, as before, we let k be the total number of 1s in the image, n1 be the number of
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pixels inside the square, and k1 be the number of 1s inside the square. Following the same
notation, we set q = k/n, the fraction of 1s in the image.

In the notation of Section 4, each possible square in the image is a part xi and the
function ξ count the number of pixels with value one in the square. According to the a-
contrario approach, the region will be declared a detection if observing at least k1 ones within
the square is highly unlikely under the null hypothesis. We define the random variable K1

corresponding to the number of 1s in the square under the null hypothesis H0. We are
interested in the event ω = {K1 : K1 ≥ k1}. Given the empirical density estimation q, the
probability of this event is,

P[K1 ≥ k1] =

n1∑
i=k1

(
n1
i

)
qi(1− q)n1−i,

which is the tail of a Binomial distribution of parameters n1 and q. We have now completed
our calculation of the NFA:

(5.4) NFA = n3/2
n1∑
i=k1

(
n1
i

)
qi(1− q)n1−i.

A square is detected when NFA ≤ ε. Again, this is not the only possible a-contrario formu-
lation of this problem, but a reasonable one. Also, the modelling is similar to the previous
MDL formulation for the same problem.

5.3. Comparison on a noisy square. At first sight, the criteria (5.3) and (5.4) seem quite
unrelated. We will now develop further on these expressions and search for common ground
from an analytical point of view.

We begin with (5.4), which is somewhat easier. The probability term above can be
bounded from above using Hoeffding’s inequality [21],

(5.5) P[K1 ≥ k1] ≤
(
q

q1

)n1q1 ( 1− q
1− q1

)n1(1−q1)
for q1 > q.

(When q1 ≤ q, it is easy to show that P[K1 ≥ k1] ≥ 1
2 and it is not an interesting case.)

We will use this upper-bound as an approximation to the probability term. Plugging this
into (5.4) and expressing the result in logarithmic terms, we obtain:

(5.6) log NFA ≈ 3

2
log n+ n1q1 log

q

q1
+ n1(1− q1) log

1− q
1− q1

.

Taking n1 as a common multiplier of the last two terms we get:

log NFA ≈ 3

2
log n+ n1

[
q1 log

q

q1
+ (1− q1) log

1− q
1− q1

]
.

=
3

2
log n− n1D(q1||q),

(5.7)

where D(q1||q) is the Kullback-Leibler divergence (KLD) of a Bernoulli distribution of param-
eter q with respect to q1. As expected, the more dissimilar q1 is to q, the smaller the above
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term will be, and the more meaningful will be the square detection. If we choose the usual
NFA parameter ε = 1 we get a detection whenever

(5.8) log NFA ≈ 3

2
log n− n1D(q1||q) < 0.

As the KLD is non-negative, the resulting score in (5.4) is guaranteed to result in a detection
when q1 is sufficiently distinguishable from q, the background model.1

We will now work on (5.3). Using Stirling’s approximation for log
(
n
k

)
(see Appendix A)

and rearranging terms we get,

L0 ≈ log n− 1

2
log 2π +

1

2
log

n

k(n− k)
+ k log

n

k
+ (n− k) log

n

n− k

= log n− 1

2
log 2π +

1

2
log

n

k(n− k)
+ n

[
−k
n

log
k

n
− n− k

n
log

n− k
n

]
= log n− 1

2
log 2π +

1

2
log

n

k(n− k)
+ nh(q),

(5.9)

where h(q) = −q log q − (1− q) log(1− q) is the Binary Entropy function [6]. Similarly,

L1 ≈
3

2
log n+ log n0 −

1

2
log 2π +

1

2
log

n0
k0(n0 − k0)

+ n0h(q0)

+ log n1 −
1

2
log 2π +

1

2
log

n1
k1(n1 − k1)

+ n1h(q1).

(5.10)

Combining (5.9) and (5.10) we get the corresponding approximate expression for MDL:

MDL ≈3

2
log n+ log n0 + log n1 − log n+ n0h(q0) + n1h(q1)− nh(q)

+
1

2
log

n0
k0(n0 − k0)

+
1

2
log

n1
k1(n1 − k1)

− 1

2
log

n

k(n− k)
− 1

2
log 2π

=
3

2
log n+ n0h(q0) + n1h(q1)− nh(q)

+
1

2

[
g(k0, n0) + g(k1, n1)− g(k, n)

]
− 1

2
log 2π.

(5.11)

where g(k, n) = log n3

k(n−k) . Observing that q = n0
n q0 + n1

n q1, n = n0 + n1 and 1 = n0
n + n1

n
allows us to write

h(q) = h
(n0
n
q0 +

n1
n
q1

)
= −

[n0
n
q0 +

n1
n
q1

]
log q −

[
1− n0

n
q0 −

n1
n
q1

]
log(1− q)

=
n0
n

[
− q0 log q − (1− q0) log(1− q)

]
+
n1
n

[
− q1 log q − (1− q1) log(1− q)

]
,

(5.12)

1The relation between the NFA and the Kullback-Leibler divergence was stated in [11] for the case of
detection of modes of histograms.
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and

n0h(q0) + n1h(q1)− nh(q) =n0

[
h(q0) + q0 log q + (1− q0) log(1− q)

]
+n1

[
h(q1) + q1 log q + (1− q1) log(1− q)

]
=− n0D(q0||q)− n1D(q1||q).

(5.13)

Which leads us to:

MDL ≈ 3

2
log n− n0D(q0||q)− n1D(q1||q)

+
1

2

[
g(k0, n0) + g(k1, n1)− g(k, n)

]
− 1

2
log 2π.

(5.14)

As with the a-contrario method, (5.14) is defined as long as n, n0, n1, k0, k1 are all strictly
positive. Let us repeat (5.8) here for reference:

log NFA ≈ 3

2
log n− n1D(q1||q).

As can be seen, both terms in the a-contrario expression are also present in the MDL one.
The first one embodies the uncertainty in the parameters of the problem (the size of the image
and the square). The second one measures the discrepancy between the empirical distribution
of 1’s in the whole image (the null hypothesis) and the distribution of 1’s inside the square
(the non-null hypothesis). The MDL expression adds a second KLD term which takes into
account the difference between the distribution of 1’s in the image and its distribution outside
the square; this reflects the fact that MDL takes both elements (object and background)
into account when making a decision, whereas a-contrario concentrates on the object to be
detected. Next, MDL includes a constant term −(1/2) log 2π, (which can be disregarded for
sufficiently large n). There is one last term which deserves some attention:

(5.15)
1

2

[
g(k0, n0) + g(k1, n1)− g(k, n)

]
.

As shown in Appendix B, (5.15) this term can be bounded as:

(5.16) log n ≤ 1

2

[
g(k0, n0) + g(k1, n1)− g(k, n)

]
≤ log

n
5
2

4(n− 2)
− 1 ≈ 3

2
log n− 3.

In words, the above term accounts for an additional difference between MDL and a-contrario
with a magnitude in the order of 3

2 log n.
Figure 2 shows the result of a numerical experiment illustrating how the scores of both

criteria vary as a function of the size of the square (horizontal axis) and the amount of noise
(vertical axis). The results are quite similar up to the point where the area of the square is
roughly half of the image (size ≈ 70 as the image is 100×100). In this first part, as the size of
the square grows, the density is better evaluated and it is easier to distinguish q1 from q; hence
the detection is dominated by the term D(q1||q) in both formulations. The term D(q0||q) in
MDL is negligible at first as the background covers almost all the image and q0 ≈ q. The
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blend: A-Contrario (magenta), MDL (red)

Figure 2: Single square detection using MDL and a-contrario for different square sizes (in terms
of their side length) and noise level (expressed as probability δ of a pixel being flipped from 1
to 0 and vice-versa). For each noise level and square size the experiment was repeated for 100
different noise realizations. In the first two images, the intensity of each pixel corresponds to
the percentage of cases where the corresponding method declared a detection (white: always,
black: never). The last image is a color blend of the first two: the red channel corresponds
to the MDL image, and green and blue channels (adding up to cyan) to a-contrario, so that
white regions (blue plus red plus green) correspond to places where both methods yielded a
detection).

a-contrario formulation is a bit more sensitive than MDL; this is consistent with the extra
term in MDL (5.15), which raises the detection threshold with respect to that of the one
obtained with a-contrario.

For sizes larger than 71, the square encompass more than half of all the pixels. Thus, q
is more and more affected by q1, and thus less distinguishable. The term D(q1||q) gradually
vanishes and the a-contrario formulation is no longer able to detect the square. For MDL,
on the other hand, as the square and the background have a symmetric role, the density q0
becomes gradually distinguishable from q, and the term D(q0||q) becomes dominant. For the
a-contrario approach, the square part is no longer anomalous while MDL, analysing the full
data, still sees a difference.

In summary, the numerical experiments show that both MDL and a-contrario result in
very similar detection criteria despite being strictly different from an analytical perspective.

6. Detection of multiple squares. In the previous section, we compared how the MDL
and a-contrario approaches behave in a simple scenario involving a detection task; the goal of
this section is to place both methods in a model selection problem.

In this case, instead of detecting the presence of individual squares, we will be dealing
with many squares (see Figure 3). All possible combinations of squares are considered and
the task is to decide the number, size, and position of the squares that are deemed present.

Making the theoretically optimal decision according to both MDL and a-contrario usually
requires the evaluation of a very large number of events. In practice, this is not possible
and both criteria need to be applied to a much smaller subset of events using heuristics to

13



propose relevant candidates. The real-life applications presented later in this work fall into
this category: as the events involve the presence or absence of a large number of points or
segments in all possible positions, orientations, etc., some heuristic is needed to narrow the
choices. As the quality of these heuristics has an impact on the results, care must be taken
in comparing MDL and a-contrario approaches under these circumstances. In this work, we
sidestep this issue by using a common heuristic to define the candidates to be tested by both
methods.

In the present case, considering all the possible squares, with all their possible sizes, even
in a small image would result in a huge number of tests, and the problem would become prac-
tically intractable. For our purposes, it is enough to compare a reduced set of arrangements.
Concretely, we generate a binary 256×256 image with a 2×2 array of small squares separated
by a given margin, which is a parameter. Note that the four small squares form a larger
square whose size is always the same. As the margin grows, the size of the smaller squares
becomes smaller. As before, the image is contaminated by independent Bernoulli noise with
error probability δ. Even in this case, there exist many possible explanations (each one of the
small squares or combinations of 2, 3, or all of them). Without loss of generality, we reduce
our candidate hypotheses to four: no detection, a single small square, four small squares, and
the large square formed by considering all four small squares as a single one. We expect the
choice to depend on the noise level and the proximity (margin) between the smaller squares.

6.1. MDL for multiple squares. The MDL detection scheme in this case is an extension
of the procedure used for a single square. Each hypothesis consists of a number c of squares,
each one described exactly as we did before for one square (location, width, and pattern of 0s
and 1s within), plus a background formed by the pixels which do not belong to any square,
again described exactly as we did in the single square scenario (Equation (5.1)).

The number of pixels in the image is n. The i-th square has ni pixels, ki of which
are 1. The number of background pixels is n0 = n −

∑c
i=1 ni, and the number of those

which are 1 is k0 = k −
∑c

i=1 ki. The corresponding empirical distributions are given by
qi = ki/ni, i = 0, . . . , c.

The number of squares, c, is unknown beforehand, and so we must also describe it to the
decoder. We can do this in a number of ways. A simple one that will usually do the work
is an arbitrary geometric distribution, P (c) ∼ (1/2)2−c, so that the additional term is just
− logP (c) = c+ 1. Summing all, the expression for LH is:

LH = log n0 + log

(
n0
k0

)
+

c∑
i=1

[
(3/2) log n+ log ni + log

(
ni
ki

)]
+ c+ 1.

As before, the hypothesis with the smallest LH is chosen.

6.2. A-contrario for multiple squares. For the a-contrario formulation, we need to specify
the family of tests, the background model, and the statistic used to evaluate a test. We use
the same notation as before.

In this case, each test is determined by a set of squares defined inside the image domain.
To take into consideration any number of squares, we can divide the family of tests according
to the number of squares and allocate an accepted number of false alarms ε

2c to the sub-family
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of tests containing c squares. We will set ηi = 2cN(c), where N(c) is the number of tests for
c squares. Since

∑
c

1
2c = 1, we know that

∑
i

1
ηi

=
∑

c

∑
t∈N(c)

1
2c

1
N(c) ≤ 1; then, according to

Proposition 4.2, the quantity ηi P(K ≥ k) is an NFA.
Let us count the number of test in the sub-family of c squares. To simplify, we will neglect

the squares overlapping and consider all possible ways of selecting c squares in the image.
Each square is determined by its upper-left corner pixel and side length. There are n possible
choices for the upper-left corner and

√
n choices for the square side (this is an upper bound,

as some of the squares considered are not really contained in the image domain). There are

about n
3
2 possible squares in the image, and thus about N(c) =

(
n

3
2

)c
combinations of c

squares. Again, this is an upper bound; but the important thing is to get an estimation of
the order of magnitude of the number of tests. All in all, ηi = 2c · n

3
2
c.

The background model H0 considers that the pixels in the image are independent and
follow a Bernoulli distribution. Its parameter q is estimated as the empirical density: q = k

n .
To evaluate a candidate s with c squares, we sum the total number of 1s in all the squares

k(s) =
∑

i∈s ki and the total number of pixels in all squares, n(s) =
∑

i∈c ni. A candidate
is considered a detection when the total number of 1s in s is too large to what would be
expected according to the background model H0. Assuming that the squares composing s
are not overlapping, then according to the background model H0, the number of 1s would
be K(s), a random variable following the binomial distribution of parameter q. Then, the
probability of observing k(s) in H0 is:

P(K(s) ≥ k(s)) = B
(
n(s), k(s), q

)
where B(n, k, q) is the tail of the binomial distribution:

B(n, k, q) =
n∑
i=k

(
n

k

)
qi(1− q)n−i.

Finally, as k(s) =
∑

i ki and n(s) =
∑

i ni, the NFA is:

NFA = 2c · n
3
2
c ·B

(∑
i

ni,
∑
i

ki,
k

n

)
.

As usual, a detection is declared when NFA ≤ ε, with ε = 1. As mentioned in section 2,
the NFA score can also be used to select the best configuration: the configuration with the
smallest NFA is the least expected one under H0 and is therefore the preferred one.

6.3. Comparison on multiple squares. In this case, the comparison will be limited to
numerical experiments.

Sensitivity as a function of noise level. Figure 3 shows the detection results of both MDL
and a-contrario on the multiple squares case, for two different margin values (small and large),
as the noise level increases.

For large margins, both methods produce the correct result (four small squares) up to a
noise level of about δ = 0.4 (MDL actually stops detecting a little earlier, at about δ = 0.38).
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Figure 3: Detection of multiple squares as a function of the error probability, for fixed margins.
First and second rows: sample images for this setting. Third row: MDL and a-contrario results
for the small margin case; a detection occurs when the score is below 0. Fourth row: results
for the large margin scenario. In the a-contrario method, lower scores indicate more significant
events. See the text for a discussion of these results.
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Figure 4: Detection of multiple squares as a function of the margin, for a fixed error rate δ.
The top row shows images of four squares separated by different margins under mild (δ = 0.2)
noise. The second row shows similar images under high (δ = 0.4) noise. Third row shows the
MDL (left) and a-contrario (right) results for δ = 0.2. A value below 0 indicates a positive
detection. Last row shows the experiment output for δ = 0.4. See text for a discussion.
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These thresholds correspond to the 5th image from the left of the second row of Figure 3;
after a visual inspection of those images, it can be argued that the automatic threshold of
δ = 0.4 is in agreement with human perception.2

For a smaller margin (2 pixels), again, both methods behave almost identically. Interest-
ingly, both methods switch to the simpler model (large square) for noise levels δ ≥ 0.3; in
this case, it is less clear which would be the reasonable limit with a casual inspection of the
corresponding image (Figure 3, first row, 3th image from the left).

Sensitivity as a function of margin size. Figure 4 shows the results of both methods on the
multiple squares experiment, this time while varying the size of the margin between the small
squares. The experiment is repeated for low (δ = 0.2) and high (δ = 0.4) noise levels.

For the low noise setting, both methods give very similar results, with identical detection
thresholds at a margin of size 16; this corresponds to the next-to-last image on the first row
of Figure 4, which again seems to indicate that the results of both methods agree with the
human perceptual threshold for this case.

In the (very) high noise setting, as can be seen in Figure 4, it is clear that both methods
switch to the simpler explanation of a single, large square, in all cases. Here a-contrario is
again slightly more sensitive, detecting a square for a margin of up to 8 pixels, whereas MDL
stops doing so at a margin of 6 pixels. The a-contrario threshold seems to be more in line
with human visual perception in this case (Figure 4). This could offer some sort of validation
to the a-contrario method, which is inspired (to some extent) by the human visual system.
We discuss this idea in a slightly more formal way in section 10.

7. Approximation of shapes using polygons. In this experiment, we are presented with
a closed curve that separates a foreground object from the background in a binary image.
The curve is approximated by several connected dots defining a polygon, and the task is to
simplify the polygonal approximation by removing unnecessary points. Ideally, we would like
to select the optimal subset of vertices from all the possible subsets of initial points, but this
quickly becomes computationally infeasible. This is a particular instance of the well-known,
general problem of subset selection in statistics. As in the general case, one must resort to a
manageable subset of candidate point subsets. Typically, two alternatives exist to construct
those subsets: backward stepwise selection (BSS) and forward stepwise selection (FSS) (see
[19, Chapter 3]).

In BSS, the starting subset P 0 is the full set of candidate points P . An initial fitness
score φ0 is associated to P 0. Let |A| denote the size or cardinality of the set A. At step t,
|P t| candidate subsets are produced by removing each one of the |P t| points in P t, and their
corresponding scores are computed. If the score of the best candidate is smaller than φt, then
that candidate is declared to be the new best solution, P t+1, and its score is assigned to φt+1.
The process stops at step t if no candidate yields a score better than φt, or |P t| = 3 (the
smallest number of points in a non-degenerate polygon).

The FSS heuristic goes in the opposite direction: the general algorithm starts with an
empty subset and greedily adds the best candidate in each iteration until the score φt can no
longer be improved. In our case, the FSS algorithm would require us to begin with at least

2Of course, a thorough assessment of such a statement would require a carefully crafted visual perception
study, which is out of the scope of this paper.
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three points from P (this can already be a problem if P is large), and add points from P until
the addition of new points to P t does not improve the current score φt.

Below we develop both a-contrario and MDL-guided BSS heuristics for choosing the best
subset of points from the full polygon, which is obtained using the Devernay Sub-Pixel Edge
Detector [16]. As the name suggests, this is a model selection problem, for which MDL
is naturally suited. As before, we describe both approaches in detail and then proceed to
compare their results on a number of selected cases.

7.1. MDL approach for polygon approximation. As before, we are presented with a 2D
binary image x of n pixels. The polygon is defined by an ordered set P of c vertex coordinates
(i, j). The interior of the polygon (which includes the vertices themselves) is denoted by I; the
outside is defined by a set O. This problem is largely analogous to that of the single square
problem presented in section 5, the only difference being the description of the region itself,
which is a polygon instead of a square. Thus, we follow the same general encoding strategy: for
a given candidate polygon P t the code-length associated to it is L(x, P t) = L(x|P t) +L(P t).
The first term is the concatenation of two enumerative codes: one for It, and one for Ot.
Again, we define n1 to be the number of pixels of the polygon in It, k1 the number of 1s inside
the polygon in It, k0 = k − k1, and n0 = n− n1. Note that n0, k0, n1 and k1 change for each
iteration It (to simplify the notation, the super-index t was not added to n0, k0, etc). We get:

L(x|P t) = logn1 + log

(
n1
k1

)
+ log n0 + log

(
n0
k0

)
.

The interesting part is how to describe P t, as there are different possibilities depending
on various assumptions we may make about the polygon which could allow us to encode the
coordinates in a clever way (e.g., differentially). As before, for the sake of simplicity, we will
describe the 2D coordinates of P t as if they were independent. This requires log n bits per
coordinate, so that L(P t) = c log n. Finally, we also need to describe the number of vertices, c,
which we do as we did in subsection 6.1, requiring c+1 additional bits. The overall code-length
is very similar to (5.2):

(7.1) L(x, P t) = 1 + c(1 + log n) + log n1 + log

(
n1
k1

)
+ log n0 + log

(
n0
k0

)
.

Notice that the term c+1 was combined with c log n as 1+c(1+log n), which also emphasizes
that the cost of describing the number of vertices, c + 1, is negligible for typical image sizes
n (e.g., log(256×256) = 16� 1). The trade-off in (7.1) is simple: removing a vertex from P t

will save us 1+log n bits. On the other hand, this will introduce errors in the frontier between
It and Ot so that the empirical distributions of It and Ot will deviate further from their
true underlying Bernoulli distributions. A well-known result from Information Theory estab-
lishes that this will result in a longer overall code-length with overwhelming probability [6,
Chapter 2].

7.2. A-contrario approach for polygon approximation. As with MDL, the a-contrario
formulation for this case is mostly analogous to the square detection problem: given the
foreground shape, the evaluation of its significance relies on the empirical density of its interior
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pixels. The main difference is that the family of tests includes all polygonal curves in the image
domain instead of all squares.

As in the case of multiple squares, the set of tests is decomposed into subsets, each
corresponding to a given number of sides in the polygon; the accepted number of false alarms
for the subset of tests which consider polygons with s sides is set to 2s. Now, given s, a crude
approximation to the number of possible polygons with s sides is to assume that any image
pixel can be a vertex, which gives us ns possible polygons. Combining both factors, we obtain:

ηs = 2s · ns.

As before, n1 is the number of pixels inside the polygon, k the total number of 1s in the image,
k1 the number of 1s inside the polygon, and the empirical density is q = k

n . Under the null
hypothesis, a Bernoulli process with P (x = 1) = q, the probability of observing at least k1 1s
among the total n1 pixels inside the candidate polygon is given by

P(K ≥ k1) = B (n1, k1, q)

and the NFA is given by

NFA = 2s · ns ·B (n1, k1, q) .

When NFA < ε the event is considered ε-meaningful and the candidate is validated.
The NFA is by construction a quantity to decide the presence or not of a pattern. How-

ever, it can also be used to decide between alternative interpretations of the same data. When
a given structure is indeed present in the data, a candidate similar to the actual structure, for
example sharing most of the pixels, may also result in a meaningful test. Nevertheless, the
actual structure would probably be the one with the largest deviation from the background
model. This deviation from the background model is measured by the NFA. Thus, the can-
didate with the smallest NFA often corresponds to the actual structure. As a consequence,
selecting the candidate with smallest NFA can be used as a model selection procedure.

7.3. Comparison on polygon approximation. Figure 5 illustrates the results obtained.
Despite their differences, both methods produce similar results: the “score-vs-number of
points” curves are similar in shape, the minima are close, and the approximated shapes are
similar too. Figure 6 and Figure 7 show the sequence of candidates obtained using the BSS
heuristic guided by MDL and a-contrario respectively; comparing these figures, the differ-
ences between the BSS paths obtained using each method can be observed. Our aim is not
to find which one has a “better” result (something difficult to define), but to show that both
approaches can be used for a real model selection problem and that the solutions are similar.

8. Line segments in 2D images. The aim of this final task is to detect the solid line seg-
ments present in an image. The LSD algorithm [23, 15] is a popular and successful application
of the a-contrario approach for this problem. Below we describe the original a-contrario-based
LSD algorithm, develop its MDL counterpart, and compare the results of both algorithms on
a number of examples.

LSD algorithm is based on the orientation of the image gradient. A fast heuristic is applied
to group neighbor pixels which share a similar gradient orientation, producing a segmentation
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Figure 5: Polygon approximation comparison. Top left: noisy image; bottom left: full polygon
estimated using the Devernay algorithm [12] (63 vertices); top center: MDL code-length vs.
polygon size (the best is marked with a star); top right: log10(NFA) vs. number of polygon
vertices (the best is marked with a star); bottom center: best MDL polygon (47 vertices);
bottom right: best a-contrario polygon (40 vertices).

Figure 6: Sequence of candidate polygons obtained using BSS Selection guided by MDL. The
polygon sizes range from 3 to 56. The chosen one is shown in gold (47 vertices).

of the image into candidate regions. A rectangle is fit to each region, resulting in candidate
line segments; these candidates are then evaluated independently using an NFA metric: those
meaningful enough are kept, and the rest discarded. In order to apply MDL to this case, we
need to formulate such detection sub-problem as a data compression one. Below we describe
both approaches in detail, beginning with the original a-contrario method.

21



Figure 7: Sequence of candidate polygons obtained using BSS Selection guided by NFA value
in the a-contrario approach. The polygon sizes range from 3 to 66. The chosen one is shown
in gold (40 vertices).

8.1. A-contrario line segment detection. Here we summarize the main ideas behind the
LSD algorithm. We refer the reader to the original work [23] for further information, and
to [15] for implementation details, in particular those pertaining to the heuristic search for
candidates.

Given an initial image x with a total of n pixels, the input to this method is an image
gradient orientation map d ∈ [−π, π)n. The null hypothesis H0 for this problem assumes that
the gradient orientations are independent and isotropic, that is, dij ∼ Uni([−π, π)) ∀i, j.

The family of tests is composed of all candidate rectangles in the image; a rectangle r
is the subset of image coordinates determined by the triad (a, b, w), where a and b are the
endpoints of the line segment that splits the rectangle in half along its shorter dimension
(that is, the “center line” of the rectangle), and w is the width of the rectangle, its shorter
dimension. We also define λr to be the normal direction of the segment (a, b).

As with the other examples in this work, a heuristic is applied to produce a reduced set
of feasible candidates to be tested for meaningfulness; the validation step is agnostic of this
heuristic, assuming that all possible rectangles in the image, up to pixel precision, are tested.

For an image with n pixels, the number of possible pairs of endpoints is bounded above
by n2, and the width of the rectangles by

√
n, yielding an upper bound for the number of

tests of N = n5/2. Despite its crudeness, using this approximation has proven good enough
for practical purposes.

What remains is to define a criterion for deciding whether a particular candidate is declared
as a positive detection, or discarded. There are many possible ways of doing so: below we
describe the method used in [23, 15].

Given a candidate r, a positive detection is declared if the number of pixels in r aligned with
r is too high to be produced by chance. A pixel xij ∈ r is considered aligned if |dij − λr| ≤ ρ
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for some pre-defined tolerance ρ ≥ 0.
Let nr = |r| be the number of pixels in r, and 0 ≤ kr ≤ nr be the number of such pixels

that are aligned. Following the a-contrario formalism, we define the NFA for this problem as

(8.1) NFA(r) = N · P
[
Kr ≥ kr

]
,

and declare a detection if NFA(r) ≤ ε. Here the random variable Kr represents the number
of aligned pixels in a rectangle r for the null hypothesis H0.

Under H0, the gradient orientation map is assumed isotropic and the probability of a single
pixel being aligned with r is P(|dij − λr| ≤ ρ) = θ = ρ

π . Furthermore, as the angles in d are
assumed independent, the aforementioned events are themselves independent and Kr is the
sum of nr independent Bernoulli random variables. Thus, Kr follows a Binomial distribution
of parameter θ,

(8.2) P
[
Kr ≥ kr

]
= B

(
nr, kr, θ

)
where B(nr, kr, θ) is the tail of the binomial distribution. Note that, as expected,

P
[
Kr ≥ kr

]
→ 0

as kr increases, which corresponds to increasingly more meaningful events.
To reduce the impact of the particular value used for the tolerance ρ, the LSD algorithm

uses multiple values3. Formally, each different value of ρ defines a new test. If γ is the number
of different ρ values used to evaluate each candidate, the grand total of tests must be corrected
by this factor: N = n5/2 · γ.

In summary, the NFA of a rectangle r with nr pixels, kr of which are aligned, is given by:

(8.3) NFA(r) = n5/2 · γ ·B
(
nr, kr, θ

)
.

As usual, we fix ε = 1; all rectangles r for which NFA(r) < 1 are considered detections.

8.2. MDL line segment detection. The object on which the line segment detection is
performed in LSD is not the original image x itself, but its gradient orientation map d. In order
to apply the MDL criterion to this problem, it is this data that we shall encode. Furthermore,
in LSD, the NFA criterion is applied independently to a set of candidate rectangles based
only on the values of d and the normal of the rectangle r, λr. Accordingly, in order to
produce a meaningful comparison between both criteria, we shall apply MDL to the problem
of compressing d within each candidate rectangle r.

The modular design of the public LSD implementation [15] allows us to quickly test the
proposed MDL variant by simply replacing the NFA criterion with the MDL one. This also
provides a common set of candidates to work with, so that the results are easier to analyze
and compare solely in terms of the criteria themselves.

The encoding problem for this case is as follows. We need to describe the gradient ori-
entation map d. According to the LSD pipeline, each element of d can be computed as a

3See [14] for a slightly different a-contrario formulation not requiring a tolerance ρ.
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function of three pixels from x, each taking on 28 possible values4. Correspondingly, each dij
can take on 224 possible values.

We are already given a set of candidate rectangles which may contain a significant portion
of points aligned with their respective normal directions λ. As with LSD, we declare a point
(i, j) to be aligned with its corresponding rectangle if |dij − λr| ≤ ρ, where ρ is a threshold to
be defined. The points that do not belong to any rectangle are ignored and are assumed to
be described using an uniform distribution on the 224 possible angle values.

Let nr be the number of points in a rectangle r and dr be the subset of elements of d
indexed by the coordinates in r. In the MDL paradigm, a rectangle r will be declared detected
if we obtain a shorter description length by assuming them to belong to the rectangle r,
rather than to the background. Formally, let L(dr, r) be the description length obtained if we
assume that the points in r form a line segment, and L(dr, H0) be the one obtained if they
are assumed to be background pixels. Note that, under the uniform assumption, the latter is
simply L(dr, H0) = 24nr.

For L(dr, r), as before, we have to consider two pieces of information: the description
of the rectangle itself, L(r), and the description of the aligned points given r, L(dr|r). The
simplest description of r, although somewhat wasteful, is to describe its two endpoints and
its width. Each endpoint requires log n bits. As in LSD, we bound the width by

√
n. This

gives us a total of 5
2 log n bits per rectangle, which is the number of tests N in the a-contrario

framework (before the correction factor γ applied due to the different angle thresholds).
A rectangle contains aligned points, unaligned points, and points whose gradient is consid-

ered undefined by the gradient computation algorithm. Our strategy is to encode the aligned
points with one distribution, and the unaligned and undefined points with another. In order
to describe the subset of aligned points we resort once again to an Enumerative Code as the
one used in section 5 and section 6. If nr is the total number of points in the rectangle and
kr is the number of those that are aligned, we require log nr + log

(
nr
kr

)
bits to indicate which

of them are so. The unaligned/undefined points are described as background samples using
24 bits each, for a total of [nr − kr]24 bits.

As for the aligned points, we know that |dij−λr| ≤ ρ. A simple and conservative hypothesis
in this case is that the angles dij ∼ Uni[λr − ρ, λr + ρ]. Now, as the 224 possible angles are
approximately uniformly distributed on [−π, π], we expect about (ρ/π)224 possible values to
fall within [λr − ρ, λr + ρ].

In summary, for a rectangle r with nr points, kr of which are aligned, we obtain:

L(dr, r) =
5

2
log n+ log nr + log

(
nr
kr

)
+ 24(nr − kr) + (24 + log ρ/π)kr.

Noting that 24(nr − kr) + (24 + log ρ/π)kr = 24nr + kr log ρ/π, the MDL score is given by:

(8.4) L(dr, r)− L(dr, H0) =
5

2
log n+ log nr + log

(
nr
kr

)
+ kr log(ρ/π).

As ρ < π, the last term, which represents the reduction in code-length due to the tighter
distribution of the aligned samples, is strictly negative. The other terms, all related to the

4The formula in [15] is a function of 4 values, but it can be reduced to 3.
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description of the rectangle, are all non-negative. Thus, intuitively, the decision rule of (8.4)
will deem a rectangle significant if enough points kr are aligned so that the savings outweight
the cost of describing the rectangle. Note also that the term log

(
nr
kr

)
is positive but diminishes

with kr (and becomes 0 when kr = nr, that is, all points are aligned), reinforcing the evidence
of alignment as kr grows.

As a final comment, notice that we have not added a term for the number of segments
in the image. This is because, contrary to the previous examples, we are considering the
detection of each segment as an independent test, instead of considering the set of segments
in the image as a whole. In terms to be explained in Section 9, it work by parts.

Figure 8: Visual comparison of line segments detected using a-contrario (blue) and MDL (red)
approaches; segments detected by both are shown in violet. As can be observed, both methods
yield extremely similar results (this is a high resolution image; zoom in to see details).

8.3. Comparison on line segment detection. Here, as in the polygon approximation case
(Section 7), our aim is to show that it is possible to use both approaches for a real detection
problem and that the solutions are similar. Figure 8 shows a visual comparison of both
detection criteria on a sample image. Line segments detected using a-contrario are marked in
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Figure 9: Line Segment Detection probability as a function of the number of points within
a candidate rectangle, and the number of those points which are aligned. The size of the
rectangle is cut at 60 (the largest value for which we have samples along the whole vertical
axis), and of course the number of aligned points cannot exceed the size of the rectangle (this
region is filled with gray in all three images). Again both criteria produce very similar results.

blue and the ones detected by MDL in red. Segments which were detected by both are shown
in violet. As can be seen, both methods yield extremely similar results.

In order to analyze the detection capability of both methods we plot the probability of
detection for different combinations of rectangle size and number of aligned points on a large
number of test images. Figure 9 compares the results of both approaches on the Line Segment
Detection problem. The figures show the probability of detection as a function of the number
of points within a candidate rectangle, and the number of those points which are aligned. The
size of the rectangle is cut at 60 (this is the largest value for which we have samples along
the whole vertical axis), and of course the number of aligned points cannot exceed the size
of the rectangle. The white region correspond to the detections in each case. For example,
both methods detect a segment when there are at least 30 aligned points in a rectangle with
40 points, and naturally there is a limit of 40 aligned points in that case. The 3rd figure is
a comparison between the results of both methods. It can be seen that again both criteria
produce very similar results and the a-contrario approach is a bit more sensitive, i.e. produce
detections with a lower number of aligned points in the rectangle.

9. When are MDL and a-contrario equivalent?. We have shown various examples where
MDL and a-contrario lead to similar formulations and very similar numerical results. Nev-
ertheless the formulations are strictly different. Indeed, MDL and a-contrario are in general
different theories. In this section we present some conditions under which MDL and a-contrario
approaches result in exactly the same criterion.

As we observed before, MDL implies selecting among a family of possible descriptions,
the one with the shortest description of the whole data. On the other hand, the a-contrario
approach concentrates on detecting parts of the data with anomalous statistics. This is a key
observation, pointing to an important difference and also suggesting how to connect the two
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approaches. The connection can be obtained by forcing MDL to work also by parts. As we
will see, given an a-contrario modeling, it is possible to build a MDL modeling resulting in
exactly the same decision.5 The opposite is not true; MDL is a more general theory.

Following the description in Section 4, let x be a data vector taking values in a finite
alphabet X and let {x1, x2, . . . ,xN} be a family of N parts. The ordering function ξ acts
on data vectors xi ∈ X ni and produces real numbers yi = ξ(xi). Finally, a stochastic model
H0 is required for background data; here we can follow Laplace’s principle of indifference
and assume that all the elements in X n are equally probable under H0. A part xi will be
considered anomalous when observing a value yi = ξ(xi) or larger is a rare event under H0.
To be precise, an anomaly is declared when

(9.1) N · P[Yi ≥ yi] ≤ ε,

where Yi is a random variable corresponding to yi under H0. Then, by Proposition 4.2, the
expected number of false alarms in H0 is bounded by ε. As a consequence, ε determines the
mean number of false alarms we are ready to accept per data set x.

With these elements, we can now specify the equivalent MDL modeling. Three assump-
tions are required:

1. The vector x is coded as random data (the background), with the exception of some
selected parts; those parts are selected from a family of N and will be handled inde-
pendently from each other.

2. In each potential part xi, the configurations with larger ξ(xi) should be favoured.
3. In each part xi, the configurations to be coded differently than the background must

use the same code-length li.
Under these assumptions, to decide whether a given part should be described differently than
the background or not, both lengths must be compared. When treated as background, the
code-length for the part is log |X ni |. On the other hand, when described as a particular part,
we need to specify which part is going to be described: this requires logN bits. Then, we
need to specify the configuration of xi: this requires li bits. Notice that the part needs not to
be specified when coded as background as all the elements of x not included in a particular
part will be coded as background; only the parts to be coded differently must be specified,
and the rest is background. Thus, xi will be described as a particular part when

(9.2) logN + li < log |X ni |.

In other words, this makes sense when

li < log |X ni | − logN,

which means that at most |X
ni |
N configurations of xi can be coded in that particular way.

Which configurations? The ones with the largest ξ(xi) values. When the following condition∣∣∣{v ∈ X ni , ξ(v) ≥ ξ(xi)
}∣∣∣ < |X ni |

N

5This is true when handling discrete data. The a-contrario approach can handle naturally continue data,
which imposes a quantization step in MDL. In practice, this difference is of little importance as most cases of
interest can be stated in a discrete way.
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is satisfied, this implies that xi is among the |X
ni |
N configuration with largest ξ(xi) and should

be coded as a especial part. This in turn is equivalent to

N

∣∣∣{v ∈ X ni , ξ(v) ≥ ξ(xi)
}∣∣∣

|X ni |
< 1,

which is equivalent to

N · P
[
ξ(Xi) ≥ ξ(xi)

]
< 1,

where Xi is a random vector following H0. This condition is equivalent to (9.1) when setting
ε = 1 and the same a-contrario criterion is obtained.

Notice that the same can be done when a non-uniform risk distribution ηi is used. Indeed,
the condition

∑N
i=1

1
ηi
≤ 1 makes that log ηi satisfy the Kraft inequality and thus there is a

prefix coding for the parts with code-lengths log ηi. Using log ηi instead of logN in (9.2) leads
to the condition

ηi · P
[
ξ(Xi) ≥ ξ(xi)

]
< 1,

which again is the a-contrario criterion when setting ε = 1.
From the MDL point of view, the a-contrario approach can be thought as a particular

strategy for modelling. In the context of the MDL framework, this strategy is often sub-
optimal. Nevertheless, the complexity of an optimal modeling imposes very often in practice
a sub-optimal approach in MDL applications. To prevent a combinatorial explosion, the
modeling is often done by independent parts (as was the case, for example, in Subsection 8.2).

The conditions required for the equivalence are not exactly satisfied in the examples de-
scribed in this work, only approximately in some of the cases. As a consequence, the criteria
obtained are only similar but not equivalent.

10. Discussion. The MDL principle and the a-contrario approaches are very different
theories, in their philosophical and mathematical foundations. Nevertheless, both share similar
characteristics. Both can be used in model selection problems and in detection problems.
Both require a modeling step and a given problem can be modeled in various ways. Tradition
favors some kinds of models in MDL and other kinds in a-contrario. Here we made an effort
to handle the same problems by both approaches and enforce the modeling to be similar. As
expected, the resulting criteria are different; surprisingly the resulting decisions are however
very similar. This may be explained by Kolmogorov’s definition of randomness, as suggested
in the introduction. Indeed, there is a connection between the compression resulting from
a model and the non-accidentalness evaluated by the same model. Thus, a configuration
considered as accidental in the a-contrario approach will not lead to a shorter description
than the random model in MDL, leading to similar decisions. Nevertheless, this conclusion is
only valid when the same (or similar) modeling is used; otherwise, a richer family of models
could handle more complex patterns, allowing for a shorter description or identifying a non-
accidental configuration.

Making the theoretically optimal decision according to both, MDL and a-contrario usually
require the evaluation of a very large number of events. In practice, this is not possible and
both criteria need to be applied to a much smaller subset of events using heuristics to propose
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relevant candidates. The real-life applications presented in this work fall into this category,
as the events involve the presence or absence of a large number of points or segments in all
possible configurations; a heuristic such as BSS or FSS is thus needed.

In the MDL formulation, the detection or model selection is determined by the modeling
step (and the required heuristics in most cases). The a-contrario approach requires, in addi-
tion, setting the expected number of false alarms threshold ε. This is a clear advantage of the
MDL approach as it requires one less parameter to be set (except in some particular cases
where the ability to specify the false detection rate may be useful). Nevertheless, considering
that the a-contrario formulation already includes the number of tests performed, the reason-
able range of values for ε is quite limited. Moreover, given the usual logarithmic dependence
on ε, the actual impact of this parameter is very limited. Indeed, the frontier between a
pattern that can be observed by accident or not is usually very sharp. This is confirmed in
our experiments where ε was always set to one, and in all cases, MDL and a-contrario resulted
in very similar criteria.

A key limitation of MDL is in dealing with real-valued data. As the performance of a
model is measured by how much it can compress the data, any reasonable model has to be
able to produce a code length that is significantly shorter than the “raw” description of the
data. For example, if we have a one megapixel 8-bit image, any description over 8 megabits
should be discarded. This is already a problem with MDL on signals over large alphabets
but becomes virtually impossible if the data is real-valued, simply because describing real
numbers requires infinite precision. Quantization is therefore a mandatory step, and optimum
quantization is still an open problem in Information Theory. On the other hand, real numbers
are not a problem in the a-contrario framework as long as the events to be detected can be
cast as thresholds on appropriate random variables.

Several works discuss the connection between the parsimony principle and the likelihood
principle [18, 5, 32]. Similarly, the present work draws the connections between the parsi-
mony principle and the non-accidentalness principle as expressed in the MDL and a-contrario
formalisms.

A key difference is that the MDL principle focuses on the best interpretation for the
whole data while the a-contrario approach concentrates on parts of the data with anomalous
statistics. To prevent a combinatorial explosion, in practice MDL is often dictated to evaluate
the data by parts. Again, the theoretical differences vanish in real applications. The examples
presented in this work and the conditions of equivalence in Section 9 suggest that when
working by parts, both MDL and a-contrario share a common ground. More generally, any
departure from randomness should allow for a shorter description in MDL using an appropriate
modelling; the same departure from randomness should be detected as an anomaly by an
appropriate a-contrario modelling. In a sense, both approaches embrace a common rationale
which may be described with the words of Dennett: “Any nonrandomness in the flux [of
energy striking one’s sensory organs] is a real pattern that is potentially useful information
for some possible creature or agent to exploit in anticipating the future.” [9, p.128]

11. Conclusion. MDL and a-contrario are seemingly very different approaches, typically
used in different scenarios. The former try to codify the whole data and the later concentrates
on the detection of some anomalous structures. After having compared both criteria, under
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different settings, both analytically and in practice, we have found that they are, in fact, closely
related. Our initial discussion makes it clear that both methods share a common root in the
Algorithmic Complexity theory. An in-depth analysis of both methods in toy examples has
shown that there are significant connections in the tools and the mathematical formulations
behind the metrics used (code-length and NFA). When applied, we found that both methods
yield similar results in all the scenarios studied; in some cases, the results are almost identi-
cal. Last but not least, we have also shown that both MDL and a-contrario methodologies
can be used interchangeably for detection (single hypothesis) and model selection (multiple
hypotheses) scenarios, without significant theoretical or practical complications.

Having established these connections opens up new and exciting lines of work involving the
cross-dissemination of these methods to new domains. Examples of these are the application
of MDL tools for Computer Vision problems or using the a-contrario formalism for tackling
a wide range of model selection problems in and outside the fields of Computer Vision and
Image Processing.

Appendix A. Stirling’s approximation for binomial terms.
Here we develop the Stirling approximation of

(
n
k

)
. First, we have the basic Stirling

approximation for n!:

n! ≈
√

2πne−nnn.

When plugged into
(
n
k

)
= n!

k!(n−k)! we obtain:

n!

k!(n− k)!
≈

√
2πne−nnn√

2πke−kkk
√
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=
1√
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√
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nn
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(n
k
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Taking logarithms, we arrive at:

log

(
n

k

)
≈ 1

2
log

1

2π
+

1

2
log

n

k(n− k)
+ k log

n

k
+ (n− k) log

n

n− k
.

Appendix B. Bounds on g(k,n).

Recall that g(k, n) = log n3

k(n−k) , which is a convex function of (k, n). Thus, the terms

g(k0, n0) + g(k1, n1) form a convex function on (k0, n0, k1, n1) which is block-symmetric in
(k0, n0) and (k1, n1) as both are interchangeable. Since the restrictions in place establish that
k0 + k1 = k and n0 + n1 = n, the minimum is attained at the mid-point (k0, n0) = (k1, n1) =

(k/2, n/2). Thus, for fixed k,n, we have g(k/2, n/2) = log n3/2
k(n−k) = g(k, n)− 1. Thus,

mink0,n0,k1,n1 g(k0, n0) + g(k1, n1)
s.t. k0 + k1 = k, n0 + n1 = k

= 2g(k, n)− 2
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and
1

2

[
g(k0, n0) + g(k1, n1)− g(k, n)

]
≥ 1

2
[2g(k, n)− 2− g(k, n)] =

1

2
g(k, n)− 1.

Now, g(k, n) is minimized when k = n/2 with g(n2 , n) = 2 + log n. Thus we have a lower
bound (which is tight when n is a multiple of 4):

(B.1)
1

2

[
g(k0, n0) + g(k1, n1)− g(k, n)

]
≥ 1

2
log n.

The upper bound can be worked in a similar way. Since, for fixed n, g(k, n) is symmetric and
strictly convex around k = n/2, we know that the maxima occur at the extreme points of the

feasible set, 1 ≤ k ≤ n − 1. Thus, maxk g(k, n) = g(1, n) = g(n − 1, n) = log n3

n−1 . Applying
analogous arguments as before, the maxima of the symmetric function g(k0, n0) + g(k1, n1)
must occur when n1 = n0 = n/2 and k0 = k1 = 1 so that

maxk0,n0,k1,n1 g(k0, n0) + g(k1, n1)
s.t. k0 + k1 = k, n0 + n1 = n

= 2 log
n3

4(n− 2)
.

Recalling that g(k, n) is minimized by g(n2 , n) = 2 + log n, we can now maximize the whole
term over 2 ≤ k ≤ n− 2 and obtain its upper bound:

1

2

[
g(k0, n0) + g(k1, n1)− g(k, n)

]
≤ 2

2
log

n3

4(n− 2)
− 1

2
(2 + log n) = log

n
5
2

4(n− 2)
− 1.

The remaining MDL term (5.15) has now been bounded as follows:

(B.2) log n ≤ 1

2

[
g(k0, n0) + g(k1, n1)− g(k, n)

]
≤ log

n
5
2

4(n− 2)
− 1 ≈ 3

2
log n− 3.
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