Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/30375
Cómo citar
Título: | Indoor localization using graph neural networks. |
Autor: | Lezama, Facundo García González, Gastón Larroca, Federico Capdehourat, Germán |
Tipo: | Ponencia |
Palabras clave: | Localization, Graphs, GNN |
Fecha de publicación: | 2021 |
Resumen: | The topic of indoor localization is very relevant today as it provides solutions in different applications (e.g. shopping malls or museums). We consider here the so-called Wi-Fi fingerprinting approach, where RSSI measurements from the access points are used to locate the device into certain predefined areas. Typically, this mapping from measurements to area is obtained by training a machine learning algorithm. However, traditional techniques do not take into account the underlying geometry of the problem. We thus investigate here a novel approach : using machine learning techniques in graphs, in particular Graph Neural Networks. We propose a way to construct the graph using only the RSSI measurements (and not the floor plan) and evaluate the resulting algorithm on two real datasets. The results are very encouraging, showing a better performance than existing methods, in some cases even using a much smaller amount of training data. |
Editorial: | IEEE |
EN: | IEEE URUCON 2021, Montevideo, Uruguay, 24-26 nov. 2021, pp. 1-4. |
Citación: | Lezama, F., García González, G., Larroca, F. y otros. Indoor localization using graph neural networks [en línea]. EN: IEEE URUCON 2021, Montevideo, Uruguay, 24-26 nov. 2021, 4 p. |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
LGLC21.pdf | Versión final | 544,59 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons