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Abstract—The topic of indoor localization is very relevant
today as it provides solutions in different applications (e.g.
shopping malls or museums). We consider here the so-called
Wi-Fi fingerprinting approach, where RSSI measurements from
the access points are used to locate the device into certain pre-
defined areas. Typically, this mapping from measurements to
area is obtained by training a machine learning algorithm.
However, traditional techniques do not take into account the
underlying geometry of the problem.

We thus investigate here a novel approach: using machine
learning techniques in graphs, in particular Graph Neural
Networks. We propose a way to construct the graph using only
the RSSI measurements (and not the floor plan) and evaluate
the resulting algorithm on two real datasets. The results are
very encouraging, showing a better performance than existing
methods, in some cases even using a much smaller amount of
training data.

Index Terms—Localization, Graphs, GNN.

I. INTRODUCTION

The great access to smartphones and the growing need
of people to stay connected has allowed the development
of a wide range of applications that benefit from the indoor
localization service.

The devices periodically interact with the access points
(APs) of different Wi-Fi networks, so that the user has at
her disposal an updated list of the networks available in
the premises. In large buildings such as shopping malls,
museums, universities, among others, several APs are dis-
tributed so that the Wi-Fi service reaches all its corners.
In this context, if the information of the power with which
the phones receive the APs’ signal in their environment is
accessed, and since these are fixed, the position of the person
could be estimated in real time.

The most common solution for this type of problem, con-
stituting the so-called Wi-Fi fingerprinting approach, is to use
classical machine learning (ML) techniques for multiclass
classification [1]. The particular building is divided into
non-overlapping zones (e.g. classrooms), and the objective
is to estimate the corresponding zone based on the power
measurements. The input is thus a vector containing the
powers measured at a given moment and the target is
the corresponding area of the premises. However, these
techniques do not take into account the underlying geometry
of the problem. To illustrate the importance of considering
the structure of the data, suffice to say that it is one of the
main reasons behind the success of Convolutional Neural
Networks (CNNs) for image and audio processing.

In this work, a novel approach is proposed, using deep
learning models for graphs. The idea is that the classifier

leverages geometric information through a graph where the
nodes are the APs and the edge weights are related to a
notion of distance between them. The model is based on the
Graph Neural Network (GNN) [2], which basically extend
the concept of CNNs for data represented in graphs.

The evaluation of the proposed approach was carried out
on two different datasets: MNAV [3] and UjiIndoorLoc [4],
surpassing in different cases the performance of previous
works, with an Accuracy of 97.2%. In some cases a very
good performance was obtained even using a small subset
of the data.

The document is organized as follows. Section II briefly
presents the literature on indoor localization. In Sec. III we
explain the proposed method in detail. Finally, section IV
describes and analyzes the experiments carried out before
concluding the article in Sec. V.

II. RELATED WORK

The problem of indoor localization is a widely studied
topic and different methods and technologies have been
used to address it. In [5] technologies such as the use
of infrared sensors, ultrasound sensors, cameras and their
subsequent processing, radio frequency technologies such as
Radio Frequency Identification (RFID) and methods based
on Wireless Local Area Network (WLAN) are presented.

Among the techniques based on WLAN, fingerprinting
stands out, where the space is divided into zones and with
the readings of signal strength between devices and APs, ML
models can be trained to classify new measurements in any
of the zones [1], [5], [6]. The most used ML method is the K-
Nearest Neighbors (KNN) method due to its simplicity and
good results. In [7] KNN is used to find the floor a device
is on using the Euclidean distance. In [8] a system based
on triangulation and KNN is used to obtain the position.
Other machine learning techniques used for this problem
include Deep Learning [9], Random Forests, Support Vector
Machine and Multi Layer Perceptron (MLP) [3].

This work seeks to use GNNs to perform the classification,
taking advantage of the spatial structure of the deployment
of APs.

III. PROPOSED METHOD

A. Spatial Information

The localization problem is basically a classification one:
given the RSSI measurements of the nAP APs as received by
the device, the objective is to learn how to map these values
to the corresponding zone. Let us denote by X ∈ RnAP×Fin

one of these measurements, where for instance Fin = 2



when measurements for both the 2.4 and 5 GHz bands are
available. We will use xi ∈ RFin to indicate the i-th row
of X, corresponding to the RSSI measurement from AP i
(with a default value of, for instance, -100 dBm in case this
particular AP’s RSSI was below the sensitivity of the device).
Given nz possible zones, we want to estimate the parameters
of a function Φ : RnAP×Fin → {1, . . . , nz} that minimizes
a certain loss over the available training set.

As we mentioned before, the family of functions Φ
typically chosen (e.g. a Neural Network) does not consider at
all the underlying structure of the problem, which is expected
to be learned from the training set instead. Here we consider
an alternative approach, where the geometric information of
the APs is provided a priori by means of a graph. This
increases the generalization power of the method as well
as decreasing the number of samples needed in the training
phase to obtain the same performance.

In particular, we define a graph where nodes are the APs
and edges are related to the distance between them. If a map
with the position of the APs and the characteristics of the
scene (floors, walls, etc.) is available, then the graph its easy
to build. Given that a complete map was unavailable for both
datasets used in this work, we used the RSSI measurements
in the training set to define a distance between APs as
follows. Given a certain APi, we take all instances in the
training set which have measurements for APi. We then
filter out the instances in which the RSSI measurement for
APi don’t surpass a certain (restrictive) threshold. The idea
behind this filter is to only consider those instances that were
obtained in an area near to the APi, this way we can use them
to estimate the RSSI measurement that the APi would have
had when trying to reach the other APs. Taking into account
this filtered subset, we estimate the distance between the
APi and any other APj as the mean over this subset of the
RSSI measurements corresponding to APj . We then repeat
this procedure for every AP and define the graph with the
edge weights calculated.

Note that in the case when there are measurements for
both bands (i.e. Fin = 2) we will obtain two weights per
edge. Although this is easily accommodated for the methods
we discuss below, results do not change significantly when
using either of them or both, so we will focus on the results
of using a single weight per edge (the one corresponding
to the 2.4 GHz band). Furthermore, in order to work with
positive weights, we have subtracted the minimum RSSI
value to all measurements as a pre-processing step. Note that
this way AP pairs may be disconnected on the graph (with
a weight equal to zero), effectively reflecting they are far
apart. Finally, note that the resulting graph is not necessarily
symmetric.

B. Graph Neural Network

Equipped with the graph G we built as described in
the previous section, we may now consider the localization
problem in the context of Graph Signal Processing [10].
Indeed, we may view each RSSI measurement X as a
signal over G: each node i has an associated vector xi.
The objective is thus to classify this graph signal into one
of the possible nz categories. To this end, we will use the

framework of Graph Neural Networks (GNNs) [2] which we
now briefly present.

GNNs may be regarded as an extension of CNNs to
graphs. In this sense, we first have to define convolution on
graphs, for which the so-called Graph Shift Operator (GSO)
S ∈ RnAP×nAP is introduced. This is a matrix representation
of the graph, which should respect its sparsity (i.e. Si,j 6= 0
whenever there is an edge between nodes i and j). In our
work we have used the normalized adjacency matrix, but
further examples such as the Laplacian may be used instead.

Computing the matrix product SX = Y (with Y ∈
RnAP×Fin ) we end up with another graph signal that ag-
gregates at each node the information of its neighbors. By
writing SKX = S(SK−1X) we may see that this way we
aggregate the information K hops away. Graph convolution
is defined simply as a weighted sum of these K signals
(i.e.

∑
k SkXhk, where scalars hk are the taps of the filter).

Notice that we may even change the output dimension
by considering an Fin × Fout matrix Hk instead of the
scalar taps. A single-layer GNN (or graph perceptron) results
of applying a pointwise non-linear function σ(·) to this
convolution:

Y = σ

(
K−1∑
k=0

SkXHk

)
(1)

and a deep GNN is constructed by concatenating several
perceptrons.

In order to classify the original signal X into the possible
nz areas, we have further concatenated the GNN with a fully
connected neural network whose output size is precisely nz .
Finally, the softmax function is applied and the maximum
value of the result is the predicted zone. Cross entropy was
used as the cost function to optimize the parameters. Note
that the output of the GNN may be regarded as a node
embedding [11] specifically for localization, an interesting
by-product which may be further studied.

IV. EXPERIMENTAL RESULTS

In order to be able to compare the obtained results with
those from other studies, two datasets were used: MNAV [3]
and UJIIndoorLoc [4]. We now briefly describe them and
discuss the obtained results.

A. UJIIndoorLoc

This dataset can be found at Kaggle1 and was used as the
official dataset of the IPIN2015 competition [4]. This dataset
was designed to test WLAN fingerprinting techniques. The
data was acquired in three buildings of the University of
Jaume I, each with 4 floors or more and covering an area of
at least 110,000m2. In total, it has 19,937 training samples
and 1,111 validation/test samples acquired 4 months after the
training data. More than 20 users and 25 different models
of devices were used. To test the proposed method, the
520 features corresponding to the APs were used from a
total of 529 features offered by the dataset. The columns
Floor and BuildingID were used as labels, and the remaining
user information, longitude and latitude were not taken into
account.

1https://www.kaggle.com/giantuji/UjiIndoorLoc



TABLE I
CLASSIFIER PERFORMANCE ON EACH BUILDING SEPARATELY USING

THE UJIINDOORLOC DATASET.

BuildingID Floors Test Accuracy Instances Number of APs
0 4 95.5 % 5249 69
1 4 82.4 % 5196 166
2 5 92.1 % 9492 53

Different classifications were explored: by BuildingID, by
Floor filtering the instances by BuildingID, and finally by
Floor using all the dataset. Intuitively, the first classification
should be the simplest due to the distance between the
different buildings. On the other hand, the most interesting
classification is to find the floor where the device is located
by looking at the entire dataset.

Note that in this case the positions of the APs are unavail-
able, highlighting the practical importance of the method to
construct the graph we discussed in Sec. III. Furthermore,
it was observed that the columns associated with some APs
had very few significant values, so they were not taken into
account for the construction of the graph. This significantly
simplifies the complexity of the graph.

The final structure of the model is very simple. It has two
GNN layers with a matrix Hk of 20 units (Fout = 20) and
a value of K = 2. As the output layer a MLP was used with
the same size as the number of zones.

Beginning by evaluating the classification by buildings, a
very good result was obtained: 99% accuracy. This perfor-
mance is also obtained with simpler classifiers such as KNN
and MLP. It should be noted that only the most relevant 194
APs were used. This allowed us to validate that the GNN was
indeed doing the job of classifying in the different zones. The
next test was to estimate the floor for each instance within
each building. This allowed us to see in more detail the
distribution of the instances on the floors of each building
without including too much interference from the rest of the
buildings. The table I shows the performance of the classifier
in each of the buildings, the number of instances and the
number of APs used.

Good performance can be seen in two of the buildings
with 92.1% and 95.5%. On the other hand, the second
building has a performance of 82.4%. Reviewing in detail
the accuracy that was obtained in the different floors of the
second building, it was observed that the highest number
of errors occurred in the floor 0, where only 50% of
the instances were correctly classified. We can expect this
problem to happen again when classifying the floors using
the entire dataset.

Finally, let us discuss the complete classification, includ-
ing both building and floor. For this, new classes were
created combining the values of the BuildingID and Floor
columns, resulting in 13 classes. In this case, for the GNN
model an accuracy value of 92.3% was obtained in test,
surpassing the performance of the KNN model for which
85.5% was obtained.

The corresponding confusion matrix is shown in Fig. 1.
In general terms, it can be seen that the classification is
carried out correctly in all the classes except for the one
corresponding to one of the floors of the second building.
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0% 3% 97% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 0% 4% 96% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 0% 0% 0% 77% 17% 3% 0% 0% 0% 0% 3% 0%

0% 0% 0% 0% 12% 75% 11% 0% 1% 0% 1% 0% 0%

0% 0% 0% 1% 0% 2% 92% 5% 0% 0% 0% 0% 0%

0% 0% 0% 0% 0% 0% 2% 98% 0% 0% 0% 0% 0%

0% 0% 0% 0% 0% 0% 0% 0% 92% 8% 0% 0% 0%

0% 0% 0% 0% 0% 0% 0% 0% 0% 98% 2% 0% 0%

0% 0% 0% 0% 0% 0% 0% 0% 0% 9% 87% 2% 2%

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 90% 10%

0% 0% 0% 0% 3% 0% 0% 0% 0% 0% 0% 8% 90%

Fig. 1. Confusion matrix obtained when classifying the instances on the
different floors of the buildings.

This is consistent with the analysis previously conducted for
that particular building.

The results show that the use of GNNs to tackle indoor
localization problems is encouraging. A very good accuracy
was obtained using a simple model for a dataset that rep-
resents a large surface, this means that there is space to
improve by exploring more complex GNN models.

B. MNAV

This second dataset was created within the framework of
the work [3], which sought to provide an indoor localization
system to the Museo Nacional de Artes Visuales (MNAV,
National Museum of Visual Arts) in Uruguay, using fin-
gerprinting techniques with Wi-Fi. The dataset is available
at Github2. Furthermore, the article includes a map of the
museum, including the position of the deployed APs and
the 16 areas that were defined.

The dataset has 10,469 measurements from 188 AP ad-
dresses. Inside the museum there are 15 APs, each one using
both the 2.4GHz and 5GHz bands, thus defining 30 of the
188 features available in the dataset. The rest are APs outside
the museum that the devices found while searching for Wi-
Fi networks. In this work, only the features corresponding to
the APs found within the museum were used, thus the rest
of the features were discarded.

The dataset was divided into two sets: train and test, with
a ratio of 80-20. The hyperparameters of the model were
chosen by cross-validation. We used the same model archi-
tecture as in the previous problem to tackle the classification
in the MNAV dataset, with a slight difference using K = 3.
The best results were obtained for a batch size of 8 instances,
a learning rate of 1e−3 and a weight decay of 1e−4.

Taking into account the accuracy as the first performance
measure, a value of 97.7% was obtained on the training set
and 97.2% on the test set showing not only that the overall
performance is good but also that the model generalizes well.

Figure 2 shows how performance varies when using differ-
ent amounts of fingerprints from the dataset. This analysis is
important because as stated by the dataset authors in [3] the

2https://github.com/ffedee7/posifi mnav/tree/master/data analysis
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Fig. 2. Accuracy using different amount of fingerprints.

fingerprint gathering stage is time-consuming (roughly 12
hours not considering the deployment and setup of the APs)
and represents a non-negligible part of the total cost of the
system. It can be seen that a good performance is obtained
even using a small proportion of the dataset. Comparing with
the reported results in [3] an improvement in the performance
is observed. The maximum value of accuracy reported in [3]
of 96% was achieved with the proposed method using only
70% of the dataset.

What is most interesting is that the result of this work is
obtained with the use of a single method (GNN) while in
[3] an assembly of 6 different ML methods is used including
an MLP model. This represents an advantage in the training
stage when looking for the best hyperparameters.

V. CONCLUSIONS

This work sought to explore the usefulness of machine
learning techniques in graphs applied to indoor localization,
a novel approach for this type of problem. Encouraging
results were obtained when compared with the the state of
the art, using two different datasets (code is available at
Github3). For the MNAV dataset, an accuracy value of 97.2%
was obtained, exceeding the result obtained in [3]. Also a
good performance was achieved using a small amount of
fingreprints. In the case of UjiIndoorLoc [4], an accuracy of
92% was obtained when using the entire dataset to classify
instances in different floors. For the construction of the
graphs, a technique was used that takes advantage of the
information of the measured RSSI to define the edges. This
allows to take into account the geometry of the problem
despite not having the complete floor plan and the positions
of the APs.

As future work, the plan is to explore other network
architectures, analyze the trade-off between performance and
number of APs, include temporal information to the model
and include the zones information to the graph.
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