Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/29820
Cómo citar
Título: | NILM : Multivariate DNN performance analysis with high frequency features |
Autor: | Mariño, Camilo Masquil, Elías Marchesoni, Franco Fernández, Alicia Massaferro Saquieres, Pablo |
Tipo: | Ponencia |
Palabras clave: | NILM, DNN, Open data, Deep learning, Energy disaggregation, Training, Power measurement, Phase measurement, Databases, Signal processing, Software |
Fecha de publicación: | 2021 |
Resumen: | In recent years we have seen deep neural networks (DNNs) appear in almost every signal processing problem. Non Intrusive Load Monitoring (NILM) was not an exception. A detailed evaluation of the supervised deep learning approach can provide powerful insights for future applications on the matter. In this work we improve a state of the art NILM system based on DNN, by including high frequency features and modifying the autoencoders latent space dimension. Moreover, we introduce a novel dataset for evaluating NILM systems. This paper presents a contribution that adds relevant features as a multivariate input to the DNNs, based on high frequency measurements of the power. Furthermore, a thorough evaluation of the generalization capabilities of these models is presented, comparing results from public databases and those acquired locally in Latin America (LATAM), an underrepresented region on the NILM problem. The data and software generated are left of public access. |
Editorial: | IEEE |
EN: | 2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), Lima, Peru, 15-17 sep 2021, pp 1-5 |
Citación: | Mariño, C., Masquil, E., Marchesoni, F. y otros. NILM : Multivariate DNN performance analysis with high frequency features [en línea]. EN: 2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), Lima, Peru, 15-17 sep 2021, pp 1-5. Piscataway, NJ : IEEE, 2021. DOI: 10.1109/ISGTLatinAmerica52371.2021.9543016 |
Departamento académico: | Procesamiento de Señales |
Grupo de investigación: | Tratamiento de Imágenes |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
MMMFM21.pdf | Camera ready | 915,12 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons