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Abstract—In recent years we have seen deep neural networks
(DNNs) appear in almost every signal processing problem. Non
Intrusive Load Monitoring (NILM) was not an exception. A
detailed evaluation of the supervised deep learning approach can
provide powerful insights for future applications on the matter.
In this work we improve a state of the art NILM system based
on DNN, by including high frequency features and modifying the
autoencoders’ latent space dimension. Moreover, we introduce a
novel dataset for evaluating NILM systems. This paper presents
a contribution that adds relevant features as a multivariate input
to the DNNs, based on high frequency measurements of the
power. Furthermore, a thorough evaluation of the generalization
capabilities of these models is presented, comparing results from
public databases and those acquired locally in Latin America
(LATAM), an underrepresented region on the NILM problem.
The data and software generated are left of public access.

Index Terms—NILM, DNN, Open Data, Deep Learning, En-
ergy Disaggregation

I. INTRODUCTION

Non Intrusive Load Monitoring (NILM) is a signal pro-
cessing application, introduced by Hart [3] for estimating
the individual electric consumption of a set of appliances by
analysing the total power consumption of the house. This
research area is in full development [2] [10] and is being
addressed by our department in collaboration with the national
electric power company (UTE).

The usage of deep neural networks (DNNs) to solve this
problem was introduced by Kelly et al. [7] and achieved
state-of-the-art results, improving the ones obtained by more
traditional approaches [5] [12] [4]. In this work, we built
over Kelly’s solution, presenting modifications to those models
in favour of using high frequency features. Furthermore, the
models are adapted depending on the appliance of interest by
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changing the dimensions of the latent space of the autoen-
coders II-A.

The selection of the high frequency features is a result of a
study of the appliance identification problem. This evaluation
was carried out by the usage of Random Forest models and
the Mutual Information criterium.

This work also presents an exhaustive evaluation of the
performance of different DNNs over different datasets. As a
result, a discussion on the generalization error of these models
is presented.

Finally, we introduce a novel dataset for NILM releated
research that was collected by the authors during this work.
The dataset consists of high and low sampling-frequency
voltage and current measurements of two local homes from
Uruguay. This contribution takes special relevance in the
context where NILM datasets are not abundant, being this one
the first for the region. The location where NILM datasets are
collected is relevant because of the different standards in the
power supplies between regions and countries.

II. PROPOSED SOLUTION

In this section we present our solution for NILM using
DNNs. We built on top of the work of Kelly et al. [7], by
including high frequency features as inputs to the DNNs and
modifying the autoencoders’ latent space dimension.

A. Models

Using as a baseline the architectures proposed in [7], we
incorporated and evaluated some modifications. Out of the
three architectures proposed in [7], we focus our work in two
of them: denoising autoencoder and start, stop and power
regressor. In Fig.1 a visual description of them is provided.
Our modifications to those models are:

• Modify the first layer of the models to incorporate multi-
variate time series as input for adding high frequency
features. Based on the results of experiments over a



Fig. 1: Diagram of the implemented DNNs architectures. Start,
stop and power regressor (top) and Denoising autoencoders
(bottom). Convolution or upsampling layers are represented
as 3D blocks. Fully-connected layers are represented as 2D
blocks.

commercial current clamp [9] , we decided to add features
based on samples up to 7kHz. Up to the cited frequency,
the clamp does not filter the signal, thus the signals may
contain useful information.

• Increase the autoencoder number of layers and adjust its
latent space dimension (code layer size) depending on the
input size. Since the input size to the models depends on
each appliance [7], it makes sense to adapt the latent
space dimension as well. On another note, increasing
the number of layers should increase the capacity of the
model for solving the proposed problem.

B. Selection strategy
We implemented the following models:
• Baseline start, stop and power regressor
• Baseline denoising autoencoder
• Start, stop and power regressor with high frequency

features
• Denoising autoencoder with high frequency features
• Denoising autoencoder with adjustable latent space di-

mension (“Custom”)
A criteria must be established for selecting the best per-

forming model for each of the appliances. We used the
mean squared error as the training loss. As an evaluation
metric we chose the Area Under the Curve (AUC) of the
Receiving Operating Characteristic (ROC), as being able to
classify whether an appliance was on or off was relevant to
the task. Furthermore, after our initial experiments we found
that high values of AUC were tied with visually appealing
predictions. In order to transform the disaggregation problem
into a classification one, for computing the ROC, binary labels
were built from the dataset, as well as a criteria for considering
the output of the models as a binary output. The definition
of binary labels is described in Section IV-A and the binary
output was obtained with a threshold for the maximum of the
dissagregated power, i.e the output of the model.

We trained 7 models per appliance, one instance of each of
the previously defined architectures plus two extra instances

of the baselines trained using synthetic data as an addition
to the training set. While in its strict sense those two extra
instances are not different models, they are needed to evaluate
the usage of synthetic data. For each instance of these 7 models
we performed hyper-parameter optimization with a grid search
strategy. In Table I we show the validation AUC for the 7
models for the microwave.

TABLE I: AUC for the 7 models for the microwave.

Regressor Autoencoder
Baseline 0.933 0.936
Synthetic Data 0.937 0.944
High Freq 0.927 0.949
“Custom” - 0.932

TABLE II: Selected models.

Selected model
Kettle High frequency autoencoder
Fridge High frequency regressor

Washing m. High frequency regressor
Microwave High frequency autoencoder

Dish washer “Custom” autoencoder

The list of selected models, the ones with highest AUC, for
each appliance is presented in Table II.

C. High Frequency Features

High frequency information was added to the model as
a multivariate signal. Instead of having the univariate time
series of the active power as an input, the modified input is a
multivariate time series including the active power and other
features derived from high sampling frequency measurements.
For selecting which features to include as an input, we worked
on a related but simpler problem: appliance identification. We
used the Plug-Level Appliance Identification Dataset (PLAID)
[1], which consist of more than 200 appliance instances from
11 appliance classes and more than 1000 records. Each record
is the voltage and current measurement of one appliance at a
sampling rate of 30kHz.

We calculated over 30 different features derived from the
current and voltage, some of them being: statistical moments,
features used in audio processing, VI trajectory image and
power values [13]. Extracting the transient event was possible
due to the records including the turning-on event for the
appliances, which allowed us to compute the features for both
the regime and the transient state separately.

This set of features was evaluated by the feature importance
obtained by using a Random Forest (RF) classifier and the
Mutual Information criterium (MI). Thus, the highest ranked
features for appliance identification were selected to build the
multivariate input for the NILM problem. In Fig. 2 transient
feature importance is shown. Additional criteria for selecting
these features were:

• Selected features should be both computable for transient
and regime states (E.g. excluding the transient duration
as a feature).



• Selected features should be one of the top 10 features by
importance for both the transient and the regime by both
importance criteria.

The features satisfying the criteria were form factor of the
current and phase shift between the fundamental compo-
nent of the current and voltage.

Fig. 2: Feature importance for the transient features. Evaluated
by Random Forest (top) and Mutual Information (bottom)

Finally, the results over PLAID using different sets of fea-
tures is presented in Table III. A 1-Nearest-Neighbor classifier
was selected as a baseline. It is worth mentioning that our
RF using all the features achieves state-of-the-art results, only
being surpassed by 0.5% accuracy by the best result found in
the literature [11].

TABLE III: Performance over different sets of features.

Samples 1074 1793
Subset of

features/Model KNN RF KNN RF

Transient 61.70 88.68±0.17 59.35 87.06±0.06
Steady state 75.88 87.24±0.28 66.76 84.23±0.25

Steady state +
Transient - 91.47±0.09 - 88.33±0.25

Steady state + VI 75.97 86.67±0.49 66.82 84.14±0.43
All - 92.79 ± 0.13 - 89.08±0.38

*VI means pixels of the VI image. The reported margin of error is
the standard deviation between runs.

III. LOCAL DATASET

For evaluating the generalization capabilities of the pro-
posed algorithms, we collected a local dataset for NILM in
Latin America (LATAM), Uruguay. A complete explanation
of the process, which included building custom meters, can
be found in our previous work [9].

A. Data description

The dataset consists of electrical measurements from two
houses for a time period of ≈3 months. The local utility
installation has a nominal frequency of 50Hz and a nominal

voltage of 230 VRMS . Aggregated active power measurements
were taken at a sampling rate of 14 kHz, and individual power
measurements, at appliance level, were collected at a 1 minute
sampling period. At the first house, we collected 7 individual
measurements: fridge, electric water heater, microwave, air
conditioner, general purpose plugs from the bedrooms, and
washing machine. At the second house we collected 8 individ-
ual measurements: electric oven, electric water heater, two air
conditioners, washing machine, fridge, kettle and dishwasher.
It is worth to note that those appliances account for the major
part of the house power usage.

B. Data release

The collected dataset can be used for further research in
this exact topic and in other related areas. Electrical power
standards varies between countries and regions, thus having
datasets from different regions is important. What is more,
LATAM is a region that is not represented in other popular
datasets from the literature. A sample of the dataset can be
found in the project’s github repository as well as instructions
on how to get access to the full dataset. [8]

IV. EXPERIMENTS

To evaluate the results of the models we selected two sets
of metrics. The first one, metrics for the regression problem,
measure the reconstruction error between the target signal and
the output from the model. The second one, classification
metrics, evaluates the detection power of the models, in the
sense of only considering if the appliance was on or not. While
regression metrics can be affected if the prediction has a time
shift respect to the target, classification metrics are not affected
by time shifts, and only consider the appliance state in the time
window of consideration.

The regression metrics are the Mean Absolute Error (MAE)
and the Relative Error In Total Energy (REITE):

REITE =
|Ê − E|

max (Ê, E)
MAE =

1

N

∑
t

|ŷt − yt| (1)

where N is the number of samples considered. The classifica-
tion metrics are the usual, precision, recall, accuracy, F1-score
and AUC-ROC as mentioned in [14].

A. Training and evaluation data

The input to every model is a power time series or a
multivariate time series including active power and the features
derived in section II-C. The sampling period of those series
is 6 seconds, matching the sampling rate of the training data
IV-A, its length (window size) depends on the appliance.

Data preprocessing: The training dataset was composed
only by data from UK-DALE dataset [6] . This data consist
of measurements from 5 houses from the UK. Three of them
also include high sampling frequency measurements. To match
the sampling frequency used in the models, data from the local
dataset was upsampled using a first order hold.



Dataset division: We split the dataset into non-overlapping
subsets: training set, validation set, and 4 test sets. For each
appliance, test set I consists of all the measurements from
one of the 5 houses from UK-DALE. Test set II is formed
with the last two weeks of data from the houses used during
training. Test set III and IV are the data from the two local
houses. From the rest of the data, training and validation sets
were built. For building those two last sets, all the activations
(i.e windows where the appliance was active as defined in
[7]) were extracted using an activation-extracting function. An
approximately equal number of non-activations (i.e periods
between two activations) were also extracted. Finally, this
activations dataset was split into the training set (80%) and
validation set (20%).

Binary labels: The binary labels for each time window were
True if the appliance activation was completely included in the
window or False if the window consisted of a non-activation.

Synthetic data: As a form of data augmentation we created
synthetic data. This process consisted in adding other appli-
ances activations to a given appliance activation with some
probability p. Being p = 0.4 the distraction probability value
used.

The regressors output 3 values: the start time, the stop time
of the appliance activation and the mean power consumed
by it. The autoencoder’s output is an univariate time series
representing the power consumption of the appliance. The
length of the autoencoders’ output is the same as the input’s
length.

B. Evaluation

To evaluate the generalization capabilities of these models
for NILM, four questions were formulated:

1) Do the models work in the context they were trained
on? - Evaluation over test set II using “activations”

2) Are the models able to generalize to unseen appliances?
- Evaluation over test set I using “activations”

3) Do the models work for a real use case? - Evaluation
over test set I using “rolling windows”

4) How does the generalization error behave when the
dataset became more diverse? - Evaluation using test
set III and IV

The evaluation over ”activations” considers windows with
activations and non-activations, makes predictions for each
window and compares them with the ground truth. This
method is the one that was used for training and validation and
consists in an approximately balanced evaluation. On the other
hand, the ”rolling windows” evaluation is closer to a real life
application of NILM and results in an imbalanced evaluation.
The process is the following: start by estimating the output
for a rolling window with a stride of 1. I.e. estimate the first
output, shift the window by 6 seconds, estimate the second
output, and so on. Finally, for every time instant there will be
w=window_size estimates, which are averaged and scaled
by a factor sf = w

w−2avg , being avg the average activation
length for the application. This averaging and normalization
are required because our models are trained to only detect

full activations. After this process, the output time series is
divided in non-overlapping windows which are compared with
the ground truth.

V. RESULTS

A positive answer to question 1 from Section IV-B can be
found in the two rightmost columns of Table ??, three out of
the five best models in validation are still the best over test
set II. The models perform well for appliances seen during
training.

Then, in the two leftmost columns of Table ?? can be
seen how the performance gets worse over unseen appliances,
with a possible answer for question 2. Although the results
remain acceptable, the generalization capability to newly data
is limited.

Answer to question 3 can be found in tables V and VI with
the results of the “rolling window” evaluation. The models
achieve acceptable results in a real use case, especially in the
classification problem.

TABLE V: AUCs scores using rolling window methodology.

Test set II Test set I
Kettle 1.000 0.998
Fridge 0.854 0.751

Washing m. 0.763 0.864
Microwave 0.973 0.956
Dishwasher 0.898 0.962

TABLE VI: Results across Test Set I of the selected models
with rolling window methodology.

Acc. Prec. Recall F1 MAE REITE
Kettle 0.987 0.686 0.967 0.802 22.48 0.609
Fridge 0.585 0.545 0.959 0.695 42.04 0.305

Washing m.. 0.612 0.107 0.904 0.191 237.98 0.962
Microwave 0.835 0.019 0.964 0.038 58.48 0.173

Dish washer 0.961 0.679 0.743 0.710 45.00 0.639

Finally, an answer to question 4 can be found with the
results over the local houses, see table VII. Performance gets
much worse when evaluating over a diverse dataset containing
appliances very different from different regions.

VI. CONCLUSIONS

High frequency features were studied in the appliance
identification problem. By measuring feature importances, two
of them were selected as the most relevant: form factor and
phase shift. Modifications to the baseline architectures from [7]
were successfully implemented to add that information and to
make the autoencoder more flexible to the task. In this line,
the selected models from our study were all a result of those
modifications. The best performing models in validation for
4 of 5 appliances included high frequency features, and the
other was the modified “Custom” autoencoder. Good results
were obtained by evaluating the models over seen appliances,
matching the validation results: adding high frequency features
introduce relevant information to the task.

Regarding generalization, the studied models are affected
when varying the evaluation datasets. While these models



TABLE VII: Results for the local dataset with rolling window methodology.

House 1 House 2
Appliance Accuracy Precision Recall F1 MAE (W) REITE Accuracy Precision Recall F1 MAE (W) REITE

Kettle - - - - - - 0.953 0.286 0.545 0.375 75 0.909
Fridge 0.759 0.781 0.959 0.861 143 0.507 0.918 0.990 0.926 0.957 96 0.071

Washing m. 0.071 0.057 1.000 0.107 793 0.995 0.323 0.300 1.000 0.462 691 0.971
Microwave 0.506 0.018 0.650 0.036 71 0.920 0.533 0.066 0.818 0.122 90 0.880

Dish washer - - - - - - 0.859 0.720 0.720 0.720 150 0.478

showed great performance over appliances seen during training
(see Figure 3) the performance decreased as the datasets
became more distinct. Results over appliances from the same
database but different houses were worse than over known
appliances. Finally, results over appliances from a completely
different database were much worse than over the rest.

In addition to the experimental results we present a novel
dataset for evaluation and research on NILM related topics
that can be openly accessed.

Fig. 3: Prediction for the dishwasher from test set II
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