english Icono del idioma   español Icono del idioma  

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12008/29820 How to cite
Title: NILM : Multivariate DNN performance analysis with high frequency features
Authors: Mariño, Camilo
Masquil, Elías
Marchesoni, Franco
Fernández, Alicia
Massaferro Saquieres, Pablo
Type: Ponencia
Keywords: NILM, DNN, Open data, Deep learning, Energy disaggregation, Training, Power measurement, Phase measurement, Databases, Signal processing, Software
Issue Date: 2021
Abstract: In recent years we have seen deep neural networks (DNNs) appear in almost every signal processing problem. Non Intrusive Load Monitoring (NILM) was not an exception. A detailed evaluation of the supervised deep learning approach can provide powerful insights for future applications on the matter. In this work we improve a state of the art NILM system based on DNN, by including high frequency features and modifying the autoencoders latent space dimension. Moreover, we introduce a novel dataset for evaluating NILM systems. This paper presents a contribution that adds relevant features as a multivariate input to the DNNs, based on high frequency measurements of the power. Furthermore, a thorough evaluation of the generalization capabilities of these models is presented, comparing results from public databases and those acquired locally in Latin America (LATAM), an underrepresented region on the NILM problem. The data and software generated are left of public access.
Publisher: IEEE
IN: 2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), Lima, Peru, 15-17 sep 2021, pp 1-5
Citation: Mariño, C., Masquil, E., Marchesoni, F. y otros. NILM : Multivariate DNN performance analysis with high frequency features [en línea]. EN: 2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), Lima, Peru, 15-17 sep 2021, pp 1-5. Piscataway, NJ : IEEE, 2021. DOI: 10.1109/ISGTLatinAmerica52371.2021.9543016
Academic department: Procesamiento de Señales
Investigation group: Tratamiento de Imágenes
License: Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
Appears in Collections:Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Files in This Item:
File Description SizeFormat  
MMMFM21.pdfCamera ready915,12 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons