Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/27498
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | del Castillo, Mariana | - |
dc.contributor.author | Pérez Alvarez, Nicolás | - |
dc.date.accessioned | 2021-05-06T14:27:34Z | - |
dc.date.available | 2021-05-06T14:27:34Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | del Castillo, M. y Pérez Alvarez, N. "Machine learning identification of piezoelectric properties". Materials. [en línea]. 2021, vol. 14, no 6, 2405, pp. 1-13, DOI: 10.3390/ma14092405. | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/27498 | - |
dc.description.abstract | The behavior of a piezoelectric element can be reproduced with high accuracy using numerical simulations. However, simulations are limited by knowledge of the parameters in the piezoelectric model. The identification of the piezoelectric model can be addressed using different techniques but is still a problem for manufacturers and end users. In this paper, we present the use of a machine learning approach to determine the parameters in the model. In this first work, the main sensitive parameters, c11, c13, c33, c44 and e33 were predicted using a neural network numerically trained by using finite element simulations. Close to one million simulations were performed by changing the value of the selected parameters by ±10% around the starting point. To train the network, the values of a PZT 27 piezoelectric ceramic with a diameter of 20 mm and thickness of 2 mm were used as the initial seed. The first results were very encouraging, and provided the original parameters with a difference of less than 0.6% in the worst case. The proposed approach is extremely fast after the training of the neural network. It is suitable for manufacturers or end users that work with the same material and a fixed number of geometries. | en |
dc.format.extent | 13 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.publisher | MDPI | es |
dc.relation.ispartof | Materials, Vol.14, Num. 9, 2405, p. 1-13, May 2021. | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Neural network | en |
dc.subject | FEM optimization | en |
dc.subject | Piezoelectric parameters | en |
dc.title | Machine learning identification of piezoelectric properties. | en |
dc.type | Artículo | es |
dc.contributor.filiacion | del Castillo Mariana, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Pérez Alvarez Nicolás, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.rights.licence | Licencia Creative Commons Atribución (CC - By 4.0) | es |
dc.identifier.doi | 10.3390/ma14092405 | - |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
DP21.pdf | Versión publicada | 3,21 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons