english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/27498 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authordel Castillo, Mariana-
dc.contributor.authorPérez Alvarez, Nicolás-
dc.date.accessioned2021-05-06T14:27:34Z-
dc.date.available2021-05-06T14:27:34Z-
dc.date.issued2021-
dc.identifier.citationdel Castillo, M. y Pérez Alvarez, N. "Machine learning identification of piezoelectric properties". Materials. [en línea]. 2021, vol. 14, no 6, 2405, pp. 1-13, DOI: 10.3390/ma14092405.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/27498-
dc.description.abstractThe behavior of a piezoelectric element can be reproduced with high accuracy using numerical simulations. However, simulations are limited by knowledge of the parameters in the piezoelectric model. The identification of the piezoelectric model can be addressed using different techniques but is still a problem for manufacturers and end users. In this paper, we present the use of a machine learning approach to determine the parameters in the model. In this first work, the main sensitive parameters, c11, c13, c33, c44 and e33 were predicted using a neural network numerically trained by using finite element simulations. Close to one million simulations were performed by changing the value of the selected parameters by ±10% around the starting point. To train the network, the values of a PZT 27 piezoelectric ceramic with a diameter of 20 mm and thickness of 2 mm were used as the initial seed. The first results were very encouraging, and provided the original parameters with a difference of less than 0.6% in the worst case. The proposed approach is extremely fast after the training of the neural network. It is suitable for manufacturers or end users that work with the same material and a fixed number of geometries.en
dc.format.extent13 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.publisherMDPIes
dc.relation.ispartofMaterials, Vol.14, Num. 9, 2405, p. 1-13, May 2021.es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectNeural networken
dc.subjectFEM optimizationen
dc.subjectPiezoelectric parametersen
dc.titleMachine learning identification of piezoelectric properties.en
dc.typeArtículoes
dc.contributor.filiaciondel Castillo Mariana, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionPérez Alvarez Nicolás, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.rights.licenceLicencia Creative Commons Atribución (CC - By 4.0)es
dc.identifier.doi10.3390/ma14092405-
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
DP21.pdfVersión publicada3,21 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons