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Abstract: The behavior of a piezoelectric element can be reproduced with high accuracy using
numerical simulations. However, simulations are limited by knowledge of the parameters in the
piezoelectric model. The identification of the piezoelectric model can be addressed using different
techniques but is still a problem for manufacturers and end users. In this paper, we present the use of
a machine learning approach to determine the parameters in the model. In this first work, the main
sensitive parameters, c11, c13, c33, c44 and e33 were predicted using a neural network numerically
trained by using finite element simulations. Close to one million simulations were performed by
changing the value of the selected parameters by ±10% around the starting point. To train the
network, the values of a PZT 27 piezoelectric ceramic with a diameter of 20 mm and thickness of
2 mm were used as the initial seed. The first results were very encouraging, and provided the original
parameters with a difference of less than 0.6% in the worst case. The proposed approach is extremely
fast after the training of the neural network. It is suitable for manufacturers or end users that work
with the same material and a fixed number of geometries.

Keywords: neural network; FEM optimization; piezoelectric parameters

1. Introduction

Piezoelectric ceramics are used in several technological devices. In some applications,
the performance of the ceramics is evaluated using numerical simulations [1,2]. One of the
most commonly used techniques is the finite element method (FEM). This method allows
the precise determination of the deformation, the dynamical behavior, and the pressure
field produced by the vibration of the ceramic when used as a transducer. However, the
accuracy of these measures is limited by knowledge of the material properties. Thus, it
is necessary to use various techniques to determine the parameters for the piezoelectric
constitutive equations. These parameters are needed in order to simulate the behavior and
develop new applications.

In the case of piezoelectric ceramics with a defined polarization direction and parame-
ters that are not frequency dependent, the material has ten independent parameters: five
elastic, three piezoelectric, and two dielectric constants (c11, c12, c13, c33, c44, e31, e15, e33,
ε11, ε33). In this work, the imaginary part of the parameter will remain so, and only the
real part of the parameters is considered. In this case, the piezoelectric model is expressed
using reduced Voigt notation. Voigt notation reduces the order of the tensors by using the
present symmetry. The physical quantities are tensors but are represented and manipulated
as vectors and matrices. Strain and stress tensors are reduced to six-component vectors
and the elastic tensor is reduced to a six-by-six matrix [3]. Assuming a linear model, the
piezoelectric constitutive equations relating the stress T and electric displacement D can be
described using this reduced notation, as shown in Equation (1).

Tn = cE
nqSq − enpEp

Dm = εS
mpEp + empSq

(n = 1 : 6; q = 1 : 6; m = 1 : 3; p = 1 : 3; )
(1)
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Here, c, ε and e represent the elastic, dielectric, and piezoelectric matrices, respectively.
The mechanical strain S and the electric field E are the independent variables. Super
index E means constant electric field, whereas super index S represents constant strain.
All parameters in the model may be complex to introduce the energy losses [4]. The real
part mainly determines the frequency of the resonant modes, whereas the imaginary part
introduces the losses. The reduced matrices are presented in Equation (2), where the
representation in the case of the 6mm symmetry is shown.

cE
ij =



cE
11 cE

12 cE
13 0 0 0

cE
12 cE

11 cE
13 0 0 0

cE
13 cE

13 cE
33 0 0 0

0 0 0 cE
44 0 0

0 0 0 0 cE
44 0

0 0 0 0 0 (cE
11−cE

12)
2


eij =

 0 0 0 0 e15 0
0 0 0 e15 0 0

e31 e31 e33 0 0 0

εS
ij =

 εS
11 0 0
0 εS

11 0
0 0 εS

33

 (2)

The determination of values for the 10 parameters in the linear piezoelectric constitu-
tive equations can be addressed by different techniques. A classical method is presented
in the IEEE standard [3] where different samples are needed. In this standard, different
samples must be cut and polarized to enlarge specific resonant modes. The objective is to
decouple resonance modes to simplify the determination of the parameters. However, this
procedure is laborious. It uses different samples that all have small differences between
them. The piezoceramic is not the same from one sample to another; this is intrinsic to
all manufacturing procedures. This type of test may result in imprecise identification of
the parameters for practical purposes. As an alternative, full identification of the model
parameters using finite element method (FEM) simulations is a successful tool for solving
this problem [5,6]. The objective is the same, to determine the parameters in the model
and there are plenty of different strategies that can be used to implement this iterative
procedure [6–8].

One of the proposed strategies divides the parameters into groups to simplify the
solution [9,10]. On one side, it is recognized that the real part of the model is responsible
for the frequency of the resonant modes and the imaginary part is associated with the
energy losses. Then the problem is divided in two. Firstly, the real part of the model is
solved, and then once that solution is good enough, the imaginary part is considered. On
the other side, acknowledging that the problem has higher sensitivity to some parameters,
the model is fitted for the more sensitive parameters first.

When the solution is close for the more sensitive parameters, many optimization
algorithms can be used. As an example, we used the classic Nelder–Mead algorithm [11].

In this work, we propose the use of neural networks (NN) to identify the parameters
of the constitutive equations shown in Equation (1). The obtention of these parameters
allows the precise simulation of piezoelectric materials using FEM simulations. The main
advantage of the NN approach is its extremely fast computation for a new sample (once the
model is trained). There are several fast techniques to characterize materials using iterative
methods and gradient optimization [12]. For example, our research group developed a
very fast version using the moving asymptotes method to implement a gradient-based
optimization algorithm for piezoelectric materials [13]. However, all iterative methods are
several orders of magnitude slower than the NN computation. In the NN approach, only
the evaluation of functions are performed whereas many FEM simulations are needed in
the iterative methods.

Here we reproduce the strategy adopted in [9], implementing the optimization only
for the more sensitive parameters. This strategy divides the problem into two steps, one to
determinate the more sensitive parameters and the second is a final refinement to adjust
all parameters in the model. The first step is the more important because it adjusts the
most important parameters for most applications. This strategy is commonly used today
for the precise determination of the model. The use of the NN provides a new approach
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to perform this first step, and maybe various other NN implementations might solve the
problem more completely. This is a first proof of concept using this approach, and we
demonstrated that this technique may be an efficient way to solve the problem.

The use of NN to identify material properties has been reported by several re-
searchers [14–16]. In the case of piezoelectric materials, the use of NN is reported to
identify nonlinearities as hysteresis and the behavior close to the resonance of a flexural
actuator [17–19]. However, we have no references regarding the use of this technique to
solve the problem of identifying the parameters in the piezoelectric model.

2. Forward Optimization vs. Neural Network Approach

In recent years, the identification of the piezoelectric model using FEM optimization
has gained popularity. In this section, we highlight the main differences between the
classical methods and the neural network approach.

Classical methods start from an initial seed and then a first simulation is performed. In
order to reproduce the impedance curve from FEM simulations, the constitutive parameters
set (c11, c12, c13, c33, c44, e31, e15, e33, ε11, ε33) (see Equation (1)) is needed, and the mass
density and geometric information must also be known. Using this information, the FEM
simulation allows the electrical impedance response and the mechanical displacement in
the nodal points to be obtained. Thus, this is called forward optimization, the computation
is a simulation from the parameter space to the impedance response space. Figure 1 shows
the flow chart for the forward optimization approach.
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Figure 1. Flow chart of the forward optimization approach using Finite Element Method (FEM). Blue
indicates the input data, green the calculus performed at each step in the loop and red the results.

Here we can distinguish several ingredients or decisions to be made that affect the
final solution: a start point or initial seed, the computation of a FEM algorithm, an objective
function to measure the difference between the simulated and the experimental data, an
exit criterion, and an optimization algorithm. The main drawback of this technique is the
computation time involved in the FEM simulation. An iterative loop of FEM simulations
must be performed for each sample to be identified.
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On the other hand, we have the neural network approach. This includes three very
different phases: the construction of the database, the training phase, and the computation
phase. To construct the database, many FEM simulations are performed from an initial
seed. The simulations are similar to those used in the forward approach. Each parameter
in the model is changed from an initial condition, generating a large family of impedance
curves linked to parameters sets. In the training phase, the network is trained using the
database impedance curves simulated by FEM. Using this information, the NN constructs
the function that predicts a parameter set starting from the impedance curve. An objective
function, an exit criterion and an optimization algorithm are necessary to train the NN.
Then, in the computation phase, the NN is ready to use, and it quickly solves the problem
using the impedance curve as input and it gives the parameters as output. Figure 2 shows
the flowchart of this approach.
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Figure 2. Neural network (NN) approach. Blue indicates the input data, green the calculus and red
the results of each phase. Each phase has an input, computation, and a result.

At the end of both processes, we obtain a set of parameters. This set can be used to
simulate the sample, and thus, a measure of the difference between the original data and
the numerical result can be obtained. Now we highlight the main issues in both techniques
in order to understand the advantages in both cases.
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2.1. Initial Seed

Both techniques need a start point for the parameters. In the forward approach, this is
the first attempt at running the iterative process. In the neural network, the database is
constructed around the starting point.

2.2. FEM Simulation

Both techniques require the realization of FEM simulations. In the forward approach,
one simulation is performed at each step of the iterative process, and depending on the
convergence a few hundred simulations are needed. In the neural network, the FEM
simulations are generated in the construction of the database. In the example presented
in this paper we performed about a million simulations. Of course, this is very time
consuming, but it is only done to construct the database. The database can be used to
train several architectures of NN. After training the NN, the algorithm to evaluate the
parameters is very fast compared to the loop of the forward approach.

2.3. Optimization Algorithm

Both techniques have an algorithm to determine the parameters. In the forward
approach, this is the set of rules or the computation to determine the next parameter
set in the loop. This computation is performed in all steps of the optimization loop.
On the other hand, for the NN, the optimization is done during the training phase, but
later, for each new sample the fitting algorithm runs only one time, providing the output
without iterations.

2.4. Objective Function

The objective function is the one to be minimized during the optimization process.
Here, we have another big difference between both techniques. The forward approach
minimizes the difference in the impedance curve (or some computation related to the
impedance), and this difference is evaluated step-by-step in the optimization iteration. The
neural network approach constructs the algorithm by training the network using simulated
curves. In these simulated curves the set of parameters is known, and the objective function
is computed in the parameter space.

2.5. Exit Criteria

In the forward approach the exit criteria must be evaluated at each step in the loop
whereas in the neural network the criteria are given in the training phase to ensure the
convergence of the results.

3. Materials and Methods

In this section, we discuss the main ideas regarding the proposed solution and the
strategy used in the implementation. This work may be interesting for piezoelectric material
manufacturers and also end users that work with a fixed geometry and material. Technical
details about the implementation of the algorithms are detailed in the MSc. thesis [20] of
M. del Castillo.

The general strategy was to implement a neural network to determine the more
sensitive parameters, [c11, c13, c33, c44, e33]. The sensitivity analysis to determine this set is
presented by Pérez et al. [5,9,10] for both the real and the imaginary part. This sensitivity
analysis is valid for discs where the diameter is much greater than the thickness. The
permittivity ε33 is also a sensitive parameter, however as it can be estimated directly from
the impedance curve, following the guidelines presented in the IEEE standard [3]; it was
not included in the chosen set.

The methodology was implemented for a specific sample, which is described in
Section 2.1. The neural network was trained using FEM simulations, Section 2.2 de-
scribes the FEM implementation and Section 2.3 provides a detailed description of the
neural network.
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3.1. Selected Sample

In order to implement the proposed technique, we selected a synthetic sample, the
commercial PZ27 from Meggitt (Ferropem Piezoceramics, Kvistgaard, Denmark) [21] with
a diameter of 20 mm and thickness of 2 mm and a mass density of 4.85 × 106 kg/m3.
Table 1 shows the real constitutive parameters obtained from [10].

Table 1. PZ27 real parameters.

C11 C12 C13 C33 C44 E31 E15 E33 ε11/ε0 ε33/ε0

118.1 74.9 73.8 110.4 20.3 –5.1 11.2 16.0 984 830

Units: (C) in GPa and (E) in N/m2.

This sample was used as the base to train the network. Each parameter was changed
by 10% around the initial value to provide the complete set of impedance curves. To
evaluate the dispersion of the parameters in PZT27 we compared them with the results
obtained in [22] for a family of 60 samples with 1 mm and 2 mm thickness, and 10 mm,
20 mm and 30 mm diameter (ten samples of each size). The results showed a dispersion of
less than 3% in the worst case.

3.2. Finite Elements

FEM software implemented in MATLAB (R2018b 1994–2021 The MathWorks, Inc.)
was used to perform the simulations. It is important to note that every FEM code that
allows the asymmetric simulation of piezoelectric elements can be used for this application.
The use of a bidimensional symmetry is mandatory for the time involved in the simulations,
and the use of 3D elements is not possible given the actual computing capacity.

Elements with a square shape were selected. A previous convergence analysis ob-
tained good results using 30 elements in the thickness. Here, we made a trade-off between
the simulation time and memory use with the convergence of the results.

Also, the FEM methods must have a mechanism to introduce the energy losses, for
example Rayleigh damping parameters [23,24] or complex parameters. In this work,
we selected the use of complex parameters, but the complex part was kept fixed. More
details about the implementation of the finite element code can be found in the work of
Perez et al. [10]

3.3. Neural Network Implementation

Here, we present the main characteristics of the neural network implemented for this
work. The neural network optimization technique performs all the FEM simulations at an
early stage, it uses the simulations to train the NN, and then, the outcome of the process is
a complex function that given the impedance curve, returns the proposed parameters.

The chosen architecture for the implemented NN was a 1-dimensional convolutional
architecture [25,26]. It takes the full impedance curve vector (1000 data points) as input
and it outputs five values corresponding to the sensitive selected set, as mentioned earlier.
It is composed of three convolutional layers. Each layer consists of a group of convolution
operators and a non-linear activation function. The network then has a reshaping layer that
allows the interconnection with the final stage. Then, we have two fully connected layers,
each one with its non-linear activation. Finally, there are five single neurons, each followed
by a linear activation; these are the outputs of the network. The non-linear activation of
choice, in this case, was the exponential linear unit all through the network, but others
might also work as well. Furthermore, no batch normalization was used for the network,
and no pooling layers were included. Figure 3 shows a schematic representation of the
network architecture, the numbers in the boxes represent the kernel dimension for the
convolution filters of each layer.
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Training a NN is an optimization process where, given a proposed model and some
data, the objective is to find the parameters of the model that better fit the data. Thus, there
is a need to define an objective function or error in the parameter space for this approach.

As an error function for this process, a linear combination of the mean square error of
each parameter was used. Furthermore, an absolute mean percentage error was used as a
metric to monitor the progress of the training phase, and to evaluate the final performance
of the network.

For all computations, the parameters were normalized by the values of Table 1. This
was done following Equation (3), where pk is the database parameter, pk

FEM is the real value
of the parameter that generated the curve and pk

seed is the value of the parameter in Table 1.

pk = pk
FEM/pk

seed (3)

Then, they all have the same weight and are close to one. Nevertheless, the progress
was independently monitored for each parameter using:

MAPEP = 100
1
N

N

∑
k=1

∣∣∣Pk − Pk
NN

∣∣∣∣∣Pk
∣∣ (4)

where Pk are the parameters of the database for each simulated curve, and Pk
NN are

the prediction of the NN for the same simulation; this computation is averaged over the
training and validation set. The network was trained with simulated data. As a starting
point for the data generation, a real ceramic was chosen, and the selected parameters were
randomly disturbed in a 10% range from the original value to generate the dataset. With
600,000 impedance curves and their corresponding parameters the network was trained
during 220 epochs, and it was later tested in a 100,000 set.

3.4. Database Creation

The biggest advantage of using the NN approach is that after the network is trained,
no more FEM simulations are needed to determine the parameters. All simulations are
used in the training of the NN and in the evaluation of the performance. In this work, the
simulations were: 600,000 for training, 100,000 for validation during the training, 100,000 to
evaluate the results in the subspace (c11, c13, c33, c44, e33) and another 100,000 to evaluate
the performance in the full parameters’ space.

The size of the database is related to the number of parameters to be identified
and range of variation of the parameters. In this first work, we identified the five most
significative parameters, and the range of variation was±10% around the initial point. This
database is suitable for this piezoceramic with this geometry. The values to generate the
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curves were chosen at random using a flat distribution. In Figure 4, ten different samples
from the dataset are plotted to show the variations in the impedance curve space.
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4. Results

In this section, we present two different sets of results. The first are for the solution
of the problem in the restricted sub space were the NN was trained. The network was
trained for the more sensitive parameters (c11, c13, c33, c44, e33) while the others remained
fixed (c12, e31, e15, ε11, ε33). In the first case, the results were evaluated using samples of the
same subspace.

Next, we evaluated a more realistic situation, where the results were evaluated using
the full set of parameters chosen at random in a 10% range.

4.1. Results in the Restricted Subspace

During training, the evolution of the error variables was very slow. However, there
were improvements in all steps, both in training and validation. The network was trained
using 600,000 synthetic impedance curves, another 100,000 were used for validation during
training and 100,000 to evaluate the results later (Test set). The selected model has only
five outputs, the subset (c11, c13, c33, c44, e33). In this case, it was possible to follow each
constitutive parameter over the training stage. Table 2 shows the mean values obtained for
the validation set and the test set.

Table 2. Average evaluation of the results in the parameter subspace.

C11 C13 C33 C44 E33

MAPEval 0.48 0.43 0.31 0.57 0.59
MAPEtest 0.48 0.43 0.32 0.57 0.59

Results need to be evaluated in a set of data never seen by the NN to ensure there is
no overfitting to the data used during training. In this case, the table above shows that this
phenomenon did not occur here.

In order to show the results in the impedance curve, one sample randomly selected
from the Test set was plotted. Figure 5 shows the impedance, modulus and phase of
the selected Test sample and the result given by the NN. Figure 6 shows the results for
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the resistance R and conductance G. The G and R peaks highlight the resonance and
the antiresonance of the sample. Note that the NN results are parameters, to obtain the
impedance, a FEM simulation must be performed after the computation. FEM simulation
requires a full set of parameters to produce an impedance curve. Thus, the less sensible
parameters used for these simulations are those in Table 1.
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Figure 6. Results for conductance and resistance. The black curve is the impedance of the Test set,
the red curve is the NN result.

We can define a mean quadratic error to evaluate the difference between both curves,
the Test and that obtained by NN. The error in ppm is defined as

errZ = 106 ∑ωN
ω1 (|ZTest(ωi)| − |ZNN(ωi)|)2

∑ωN
ω1 |ZTest(ωi)|2

(5)
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For a selected subset of curves, the error computed in Equation (5) has a mean value
of 237 ppm and a maximum of 804 ppm. In the parameter space, the error between the
Test samples and the results of the NN can be defined as

errP = 106 (PTest − PNN)
2

P2
Test

(6)

Here P is one element of the subset of parameters (c11, c13, c33, c44, e33) and the results
are in ppm. Table 3 shows the mean and the maximum errP for each parameter.

Table 3. Average evaluation of the results in the parameter space in ppm.

C11 C13 C33 C44 E33

ErrP (Aver) 3.5 2.9 3.3 4.5 6.6
ErrP (Max) 15 5.8 5.1 11.7 21.4

4.2. Results with the Full Set of Parameters

To evaluate the robustness of the NN, the network was tested again using a different
Test set with the full set of parameters changing at random. This is a more realistic situation.
In practice we do not know the real value of any of the parameters and all must be identified.
The new Test set also has a size of 100,000. Table 4 shows the results obtained in this case.

Table 4. Average evaluation of the results in the full parameter space.

C11 C13 C33 C44 E33

MAPEtest 1.3 1.3 0.38 0.83 2.6

For a newly selected subset of curves, the error computed in Equation (4) has a mean
value of 1044 ppm and a maximum of 2329 ppm. This is a statistical result for the Test set.
In a practical application, this is more than enough to simulate the behavior of the sample.

In this case the differences between both curves can be clearly observed. Figures 7 and 8
shows the impedance and the G-R representation in this case. Note the differences close to
the antiresonance of the thickness mode.
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Figure 8. Results of conductance and resistance for the full set. The black curve is the impedance of
the Test set, the red curve is the NN result.

5. Discussion and Conclusions

This work is a first proof of concept in the use of neural networks for the identification
of the parameters in a linear piezoelectric model. In this first approach, we proved the ability
of the NN to determinate the more sensitive parameters. In the analysis of an impedance
curve to determine the parameters of the constitutive equations, the determination of the
sensitive parameters is very demanding. This determination requires a fast and robust
method. Once the sensitive parameters are close to the solution, there are several efficient
techniques that can be used to obtain the final solution, for example, the Nelder–Mead
nonlinear minimization.

To train the network, a first seed for the parameters that is close to the solution is
necessary. In the training phase, hundreds of thousands of curves are simulated by FEM.
However, after the NN is ready, computation is extremely fast without the need to perform
new FEM’s simulations.

Results were tested using two different sets of curves, the first restricted to the sub-
space of the more sensitive parameters and the other with all parameters changing at
random. The error in the restricted subspace is one order less, however, in the full problem
the agreement is still suitable to be used in a later Nelder–Mead minimization.

The main difficulty of the proposed approach is the need for a first approximate
solution. In the case of a new material or a material without a previous numerical charac-
terization of the full set of parameters, we cannot apply this methodology. However, the
methodology could be very useful for a manufacturer of piezoceramics. Manufacturers
work with the same material and a limited family of geometries. Thus, the first characteri-
zation can be performed by another methodology, and after that a NN could be trained
for each geometry. In this case, we can obtain the properties for each fabricated sample,
without delay and without a specialist, to characterize the production. This first contribu-
tion shows the feasibility of the technique to solve the problem. Next steps include the
generalization for the full parameter set and testing the application with real piezoceramics.
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19. Paralı, L.; Sarı, A.; Kılıç, U.; Şahin, Ö.; Pěchoušek, J. The artificial neural network modelling of the piezoelectric actuator vibrations
using laser displacement sensor. J. Electr. Eng. 2017, 68, 371–377. [CrossRef]

20. del Castillo Larumbe, M. Identificación de Parámetros en el Modelo Piezoeléctrico a Partir de Medidas de Impedancia Eléctrica.
Master’s Thesis, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay, 2020.

21. Ferroperm Piezoceramics PZ27 Datasheet. Available online: https://www.meggittferroperm.com (accessed on 15 March 2021).
22. Perez, N.; Buiochi, F.; Andrade, M.A.B.; Adamowski, J.C. Numerical characterization of soft piezoelectric ceramics. AIP Conf. Proc.

2012, 1433, 648–651. [CrossRef]
23. Sánchez, F.; Fernández, A. Rayleigh damping parameters estimation using hammer impact tests. Mech. Syst. Signal Process 2020,

135, 106391. [CrossRef]
24. Pérez, N.; Carbonari, R.; Andrade, M.A.; Buiochi, F.; Adamowski, J. Sensitivity Analysis and Identification of Damping Parameters

in the Finite Element Modeling of Piezoelectric, Ceramic Disks. Adv. Mat. Res. 2014, 975, 288–293. [CrossRef]

http://doi.org/10.1002/nme.1620020202
http://doi.org/10.3390/computation6040060
http://doi.org/10.1109/TUFFC.1996.535477
http://doi.org/10.1109/T-SU.1967.29405
http://doi.org/10.3390/ma9020071
http://www.ncbi.nlm.nih.gov/pubmed/28787875
http://doi.org/10.1109/TUFFC.2008.664
http://www.ncbi.nlm.nih.gov/pubmed/18334352
http://doi.org/10.1109/TUFFC.2003.1226540
http://www.ncbi.nlm.nih.gov/pubmed/12952087
http://doi.org/10.1007/s00339-009-5438-1
http://doi.org/10.1109/TUFFC.2010.1751
http://doi.org/10.1016/j.ultras.2014.03.006
http://www.ncbi.nlm.nih.gov/pubmed/24735932
http://doi.org/10.1093/comjnl/7.4.308
http://doi.org/10.1002/cmm4.1014
http://doi.org/10.1088/0964-1726/25/2/025019
http://doi.org/10.1080/17415970600573676
http://doi.org/10.1109/20.250786
http://doi.org/10.1016/S0925-2312(02)00578-7
http://doi.org/10.1109/ISEE2.2019.8920963
http://doi.org/10.1007/s00500-020-05006-3
http://doi.org/10.1515/jee-2017-0069
https://www.meggittferroperm.com
http://doi.org/10.1063/1.3703267
http://doi.org/10.1016/j.ymssp.2019.106391
http://doi.org/10.4028/www.scientific.net/amr.975.288


Materials 2021, 14, 2405 13 of 13

25. Bishop, C. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006.
26. Goodfellow, I.; Bengio, J.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.


	Introduction 
	Forward Optimization vs. Neural Network Approach 
	Initial Seed 
	FEM Simulation 
	Optimization Algorithm 
	Objective Function 
	Exit Criteria 

	Materials and Methods 
	Selected Sample 
	Finite Elements 
	Neural Network Implementation 
	Database Creation 

	Results 
	Results in the Restricted Subspace 
	Results with the Full Set of Parameters 

	Discussion and Conclusions 
	References

