Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/27061
Cómo citar
Título: | Single image non-uniform blur kernel estimation via adaptive basis decomposition. |
Autor: | Carbajal, Guillermo Vitoria, Patricia Delbracio, Mauricio Musé, Pablo Lezama, José |
Tipo: | Preprint |
Palabras clave: | Computer Vision and Pattern Recognition, Artificial Intelligence, Machine Learning |
Fecha de publicación: | 2021 |
Resumen: | Characterizing and removing motion blur caused by camera shake or object motion remains an important task for image restoration. In recent years, removal of motion blur in photographs has seen impressive progress in the hands of deep learning-based methods, trained to map directly from blurry to sharp images. Characterization of motion blur, on the other hand, has received less attention and progress in model-based methods for restoration lags behind that of data-driven end-to-end approaches. In this paper, we propose a general, non-parametric model for dense non-uniform motion blur estimation. Given a blurry image, we estimate a set of adaptive basis kernels as well as the mixing coefficients at pixel level, producing a per-pixel map of motion blur. This rich but efficient forward model of the degradation process allows the utilization of existing tools for solving inverse problems. We show that our method overcomes the limitations of existing non-uniform motion blur estimation and that it contributes to bridging the gap between model-based and data-driven approaches for deblurring real photographs. |
Editorial: | arXiv |
EN: | Computing Research Repository (CoRR), arXiv:2102.01026, pp. 1-11, feb 2021 |
Citación: | Carbajal, G., Vitoria, P., Delbracio, M., y otros. Single image non-uniform blur kernel estimation via adaptive basis decomposition. Computing Research Repository (CoRR). [Preprint]. EN: Computing Research Repository (CoRR), 2021, pp 1-11. arXiv:2102.01026. |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
CVDML21.pdf | Preprint | 26,09 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons