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Universidad de la República

Uruguay
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Abstract

Characterizing and removing motion blur caused by
camera shake or object motion remains an important task
for image restoration. In recent years, removal of motion
blur in photographs has seen impressive progress in the
hands of deep learning-based methods, trained to map di-
rectly from blurry to sharp images. Characterization of mo-
tion blur, on the other hand, has received less attention and
progress in model-based methods for restoration lags be-
hind that of data-driven end-to-end approaches. In this pa-
per, we propose a general, non-parametric model for dense
non-uniform motion blur estimation. Given a blurry im-
age, we estimate a set of adaptive basis kernels as well as
the mixing coefficients at pixel level, producing a per-pixel
map of motion blur. This rich but efficient forward model
of the degradation process allows the utilization of exist-
ing tools for solving inverse problems. We show that our
method overcomes the limitations of existing non-uniform
motion blur estimation and that it contributes to bridging
the gap between model-based and data-driven approaches
for deblurring real photographs.

1. Introduction

Motion blur results from the relative motion between the
camera and the scene, which is determined by the interac-
tion of three elements: the motion of the camera or ego-
motion, the three-dimensional geometry of the scene, and
the motion of objects in the scene. When the exposure time
is large compared to the relative motion, the camera sensor
at each point receives and accumulates light coming from
different sources, producing different amounts of blur.

Psychophysical and neurological evidence show that
motion blur provides important cues for visual perception,

scene understanding and locomotion [4, 17, 40]. Besides
deblurring, motion blur estimation has been successfully
applied to different tasks such as scene interpretation, struc-
ture from motion, image segmentation, and uncertainty
characterization of the observation [11, 19, 28].

Most non-uniform motion blur estimation methods as-
sume a parametric model of the motion field, either by con-
sidering a global parametric form induced by camera mo-
tion [16, 18, 41, 47], or by locally modeling the motion field
with linear kernels, parameterized by the length of the ker-
nel support and its orientation [15, 23, 41, 44]. In most sit-
uations, for instance under camera shake from hand tremor,
those models are not adapted to real case scenarios [13].

To overcome these limitations, we propose a novel ap-
proach for non-parametric, dense, spatially-varying motion
blur estimation based on an efficient low-rank represen-
tation of the pixel-wise motion blur kernels. More pre-
cisely, for each blurred image, a neural network estimates
an image-specific set of kernel basis functions, as well as
a set of pixel-wise mixing coefficients, cf. Figure 1. In
this way, for each pixel a unique motion blur kernel is as-
signed, given by the corresponding linear combination of
the image-specific kernel basis functions. We show that this
procedure allows to generate a wide range of complex mo-
tion blur kernels that are well adapted to real acquisition
scenarios. To the best of our knowledge, the proposed ap-
proach is the first dense non-parametric non-uniform mo-
tion blur estimation method.

To further validate our method, we apply our estimated
motion blur fields to two tasks: model-based image deblur-
ring [6, 25, 26, 49, 47] and blur detection [14, 29, 42]. We
show that in both cases we achieve results that are compa-
rable to those of state-of-the-art end-to-end deep learning
methods in standard benchmarks of real blurred images,
therefore contributing to bridge the gap between model-
based and data-driven approaches.
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Figure 1: Overview of the proposed method. Given a blurry image, a two-headed neural network predicts the kernel basis
and the pixel-wise mixing coefficients. This efficient representation allows re-blurring the corresponding sharp image by first
convolving it with each basis kernel and performing a weighted sum of the results using the mixing coefficients. The CNN
and generators are trained by comparing the re-blurred image to the original blurry image.

Code and pre-trained model weights will be available
upon acceptance.

2. Related Work

Single Image Non-Uniform Motion Blur Estimation
Early methods attempting to estimate spatially-varying mo-
tion blur kernels consider that such non-uniformity is
mainly caused by 3D camera tilts or rotations [16, 45, 47].
In this setting, the blurred image results from the integration
of the intermediate images that are varying perspective pro-
jections of the scene. By assuming that the focal length is
sufficiently long or the scene is far enough to be considered
as planar, the transformations are reduced to homographies.
This leads to the so-called Projective Motion Blur Model
(PMBM) [45]. These methods achieve impressive results
under these conditions, but fail when the scene is close to
the camera [16, 47]. Moreover, these methods suffer from
high computational cost, since the optimization involves a
large number of homographies that must be computed for
the intermediate estimated images.

In order to reduce the computational cost of PMBP ap-
proaches, Hirsch et al. [18] propose a position dependent
combination of a set of localized blur kernels. Thus, they
are able to express smoothly varying blur using the struc-
tural constraints of the PMBM model while still being lin-
ear in its parameters. To that end, the local blur kernels at
the patch-level are defined as linear combinations of a set
of pre-computed homographies. However, the weights of
these linear combinations are optimized for the full image
and therefore are global and not pixel-specific.

To deal with spatially-varying blur due to depth and
moving objects, methods like [22, 36] propose to segment
the image in a reduced number of layers according to a met-
ric representing the amount of blur. These methods are sen-
sitive to the segmentation of the blurred image, and while
they are well adapted to scenes with moving objects, they
do not behave well when the camera is close to a scene pre-

senting complex 3D structure.
A different approach that is well adapted to both scene

depth variations and moving objects consists in predicting
motion blur locally, at the patch level. Sun et al. [44] pro-
pose a deep learning approach to predict the probabilistic
distribution of motion blur at the patch level using a Convo-
lutional Neural Network (CNN). To this end, they consider
a set of pre-defined basis motion kernels. These kernels are
linear, and are parameterized by their lengths and orienta-
tions. The network estimates the probability of each kernel
for a given patch. This leads to a non-dense motion blur ker-
nels field, which is later made dense using a Markov random
field model enforcing motion smoothness. Gong et al. [15]
directly estimate a dense motion flow from the blurred im-
age using a fully-convolutional deep neural network (FCN).
To train the FCN, they simulate motion flows to generate
synthetic blurred image / motion flow pairs. As in [44], the
predicted motion blur kernels are linear and parameterized
by their horizontal and vertical components, each of them
defined on a discrete set. Both methods propose to apply
their local motion blur kernel estimates to image deblurring,
using an L2 data fitting term and combined with EPLL im-
age prior [55].

Another interesting parameterization in the context of
video appears in [5, 20] where per-pixel motion blur ker-
nels are modeled as the combination of two line segments,
obtained from the next- and previous-frame optical flow es-
timations. In [5], kernels are inferred by a neural network
that predicts indexes in a pre-computed look-up table.

Kernel Prediction Networks Recently, Kernel Predic-
tion Networks (KPN) have been proposed for low-level vi-
sion tasks such burst denoising [31, 48], optical flow esti-
mation, frame interpolation [34, 35], stereo and video pre-
diction [21], among others. Several works have used KPNs
in the context of burst denoising. Mildenhall et al. [31] pro-
duce denoised estimates at each pixel as a weighted aver-
age of observed noisy intensities in a window around that
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Figure 2: Examples of generated kernel basis {kb} and corresponding mixing coefficients {mb} predicted from the
blurry images shown on the left. The adaptation to the input is more notorious for the elements that have significant weights.

pixel location in all frames. These averaging weights, or
kernels, are allowed to vary from pixel to pixel to implic-
itly account for motion and image discontinuities, and are
predicted from the noisy input burst using a KPN. To im-
prove the computational efficiency of this procedure, Xia et
al. [48] propose a basis prediction network that, given an
input burst, predicts a set of global basis kernels — shared
within the image — and the corresponding mixing coeffi-
cients, which are specific to individual pixels.

Relation with the Proposed Approach In this work we
propose dense, spatially-varying motion blur estimation
based on an efficient low-rank representation of the pixel-
wise motion blur kernels. As in [5, 15, 20, 44] the per-
pixel kernels are modeled as linear combinations of base
elements. However, contrary to their approaches, we use a
KPN to infer kernel base elements that are specific to each
input image, and that have no fixed parametric form. Instead
of learning the kernels to solve directly the inverse problem,
like in [48], we learn them to fit the forward model.

3. Method for Non-Uniform Blur Estimation
3.1. Image Degradation Model

We model non-uniform motion blur as the convolution1

of a sharp image with a spatially varying filter, the mo-
tion blur kernel. This simple model represents the inte-
gration, at each pixel, of photons arriving from different
sources due to relative motion between the camera and the
scene. Formally, given a sharp image u of height H and
width W , and a set of blur kernels ki,j ∈ [0, 1]

K×K , for
i = 1 . . . H, j = 1 . . .W , the blurry image v is the result of
applying the per-pixel operation:

vi,j = 〈ūi,j ,ki,j〉+ ni,j , (1)

1In general, we refer to convolution in the deep learning sense, except
when it is clear from the context.

where ūi,j is a window of size K×K around pixel (i, j) in
image u and ni,j is independent zero-mean white Gaussian
noise. In our model, we assume conservation of energy by
imposing ||ki,j ||1 = 1.

Estimating a unique blur kernel per pixel ki,j becomes
computationally impractical for large images and large ker-
nel sizes. To mitigate this problem, we propose an efficient
representation of the per-pixel kernels ki,j using an adap-
tive basis decomposition. A set ofB image-dependent basis
motion kernels {kb}b=1,...,B is computed, together with the
corresponding pixel-wise mixing coefficients {mb}. The
mixing coefficients are normalized so that they sum to one
at each pixel location. Thus, the per-pixel kernels ki,j result
from the convex combination of the basis kernel, conser-
vation of energy is guaranteed, and the degradation model
becomes:

vi,j = 〈ūi,j ,
B∑
b=1

kbmb
i,j〉+ ni,j , (2)

We use a deep neural network to estimate, from a
given input blurry image, both the dictionary of B basis
motion kernels {kb}b=1,...,B and the mixing coefficients
{mb}b=1,...,B . Building upon recent work in kernel pre-
diction networks [48], the network is composed by a shared
backbone CNN and two generator heads. We refer to Fig-
ure 1 for an overview of the proposed method. The first
generator outputs a global kernel basis of size K ×K ×B
(i.e.,B basis elements of sizeK×K). The second generator
outputs B maps of mixing coefficients of the same spatial
size as the input image, thus, the resulting size is equal to
H × W × B. In our experiments we used K = 33, and
the number of basis kernels B = 25 was set by analyzing
the reconstruction cost of the low-rank decomposition for
typical rotation, zoom and object motion blur fields.

Figure 2 shows several examples of the set of kernel ba-
sis and corresponding mixing coefficients predicted for dif-
ferent images. Note how the basis is image-dependent, and
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Figure 3: Visual comparison of non-uniform motion blur kernel estimation. From top to bottom: Gong et al. [15], Sun
et al. [44] and our proposed approach. From left to right: two examples from CUHK blur detection dataset [42], two from
GoPro [33] and one from REDs [32]. Best viewed in electronic format.

this adaptation is more notorious for the kernel basis that
are active (i.e. the corresponding mixing coefficients have
high values throughout the scene). Normalization of the
blur kernels and the mixing coefficients is achieved by us-
ing Softmax layers. Architectural details of the network are
presented in the Appendix.

Limitations of the model The main limitations of our im-
age degradation model is that the motion fields that can be
captured are limited by the size of the kernel support K.
This size is limited for computational reasons, and because
a larger kernel dimension would require a larger number of
base elements to capture the complexity of the motion flow,
i.e. for the low-rank approximation to be accurate. One
idea to overcome this limitation is to extend the proposed
approach to a multi-scale setting.

Also, our model cannot cope with with saturated pixels,
since in these pixels the energy conservation is not satis-
fied. Alternatives to deal with this limitation are proposed in
[47, 7, 38]. Having the ability to deal with saturated pixels
may improve kernel estimation, since usually motion fields
observed at point light sources are very well defined.

3.2. Objective Function

We propose two reconstruction losses to train the gener-
ators of basis and mixing coefficients.

Reblur Loss Given corresponding blurry and sharp im-
ages, we first apply the predicted motion blur field to the
sharp image. The re-blurring of the sharp image can be
done efficiently by first convolving it with each of the ker-
nels in the base, and then doing an element-wise product of

theB resulting images with the corresponding mixing coef-
ficients, and then adding the results. More precisely, given
a blurry image vGT , we aim to find the global kernel basis
{kb} and mixing coefficients {mb} that minimize

Lreblur =
∑
i

∑
j

wi,j(vi,j − vGTi,j )2, (3)

where the vi,j are computed using (2), and wi,j is a scalar
used to weigh different regions in the image. The effect of
these weights will become more clear in Section 3.3, when
training on synthetic data.

Kernel Loss When available, ground truth pixel-wise mo-
tion blur kernels are compared to the predicted per-pixel
kernels. This is the case when using synthetic blurry im-
ages, as described in Section 3.3. Given a ground truth per-
pixel blur kernel {kGTi,j }, the computed kernel basis {kb}
and mixing coefficients {mb

i,j}, the kernel loss is defined
as:

Lkernel =
∑
i

∑
j

wi,j

∥∥∥∥∥
B∑
b=1

mb
i,jk

b − kGTi,j

∥∥∥∥∥
p

, (4)

where the weights wi,j are defined as in the reblur loss.

3.3. Synthetic Dataset Generation

Our synthetically blurred dataset consists of 5,888 im-
ages from the ADE20K semantic segmentation dataset [54].
To generate random motion kernels, we use a camera-shake
kernel generator [13, 9] based on physiological hand tremor
data and pre-compute 100,000 kernels with an exposure
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time of 1s. In our experiments, we observed that training
on this synthetic data generalizes remarkably well to real
photographs with different types of scenes and motion.

More specifically, for a random sharp image u, we per-
formed a convolution of the image by a random kernel
k. Additionally, each segmented part in the image anno-
tation (if any), is independently convolved with a different
random kernel. Finally, for each image we obtain a tu-
ple
(
uGT ,vGT , {k}GT , {m}GT

)
containing the sharp im-

age, blurry image and the pairs of ground truth kernels and
masks applied to generate the blurry image.

In order to have a soft transition between different blurry
regions, each segmentation mask was convolved with its
corresponding kernel. To simplify, a maximum of three
segmentation masks with a minimum size of 400 pixels are
considered for each image. Also, to prevent a single ker-
nel from dominating the losses (3) and (4), weights wi,j are
computed as the inverse of the number of pixels which be-
long to the same segment. We refer to the Appendix for
more details and examples from the dataset.

3.4. Model Training

We train the network using the sum of the Reblur loss (3)
and Kernel loss (4) with equal weights. Training only with
the Reblur term would make the problem more challenging.
Adding the Kernel loss improves the convergence.

Training a model to predict a per-pixel kernel estima-
tion is a difficult task. Moreover, in our case the model
needs to figure out an image-specific low-rank decomposi-
tion in order to approximate all the kernels present in the
image. This difficulty was noticeable in our experiments,
where we observed very slow convergence and only started
to see well-shaped kernels after around 200 epochs. In our
experiments we observed that an L2-norm on the kernels
(4) was adequate to find a first approximation of the model.
After 350 epochs, we switched to the more robust L1-norm,
which is harder to optimize but allows to recover sharper
kernels. In total we trained our model for 900 epochs using
image patches of 256 × 256 pixels. Additional details of
the training procedure and hyper-parameters can be found
in the Appendix.

3.5. Qualitative Results

Figure 3 shows some examples of non-uniform blur
kernel estimation obtained by our method. We visually
compare them with the results of two other existing deep
learning-based non-uniform motion blur estimation meth-
ods, Gong et al. [15] and Sun et al. [44]. Despite being
trained on synthetically blurred images, the method gen-
eralizes remarkably well to real blurry images (first two
columns) as well as blurry images synthesized from video
sequences as in GoPro [33] and REDs [32] datasets.

Our model is able to characterize different types of cam-

era and objects motion, including rotations and zoom-in,
and shows some degree of global reasoning of the scene
when estimating motion in texture-less regions. Note also
that the motion blur kernels estimated by the compared
methods tend to correlate with the image structure instead
of the underlying motion. Moreover, our model predicts
continuous free-form motion kernels, whereas [44] and [15]
are restricted to linear ones. Further qualitative estimation
results are shown in Figure 6.

4. Applications
In this section we validate our estimated non-uniform

motion blur kernels with two applications: non-blind image
deblurring and blur detection.

4.1. Image Deblurring

Image deblurring methods can be broadly classified in
two types: classical variational methods and deep learning
methods. The former solve the deblurring inverse problem
at the same time as estimating the motion blur kernel or for-
ward model [12, 37, 6], and typically excel when the motion
blur is uniform across the scene. Recently, deep learning
based approaches have outperformed classical methods by
directly estimating the transformation that maps blurry im-
ages to sharp images. One of the reasons for their success
is the ability of neural networks to learn to both resolve the
deconvolution as well as remove any artifacts of that pro-
cess.

Early deep learning methods sought to simply minimize
the L2-norm between the sharp image and the output of
the model. This might introduce a blurring effect due to
the regression-to-the-mean problem [46, 50], motivating the
use of Generative Adversarial Networks (GANs) to obtain
more realistically looking restorations [25, 26]. However,
GAN-based approaches introduce the potential pitfall of
hallucinating image content [3]. To this purpose, another
advantage of knowing the forward model is that it can be
used to impose consistency between the restored and input
blurry images [5].

Here we aim at leveraging the advantages of both data-
driven and model-based approaches. Once the spatially-
varying dense motion kernels have been estimated by our
deep model, we can obtain a precise formulation of the in-
verse problem. This allows both a useful analysis of the
scene, and a more controlled solution of the inverse prob-
lem, using variational methods for maximum a-posteriori
(MAP) estimation, compared to the black-box one-to-one
mapping of purely data-driven approaches.

4.1.1 Formulation

Resorting to classical non-blind deconvolution maximum-a-
posteriori (MAP) estimation, we proceed as follows. Given
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Original Cho [6] Xu [49] Whyte [47] Gong [15] D-GAN2 [26] SRN [46] RealBlur [38] Ours

27.58 dB 33.95 dB 33.24 dB 34.00 dB 27.45 dB 30.88 dB 31.51 dB 33.06 dB 35.44 dB

23.08 dB 28.71 dB 28.98 dB 29.57 dB 23.08 dB 25.94 dB 25.14 dB 28.04 dB 28.65 dB

Figure 4: Qualitative comparison of different deblurring methods in Köhler Dataset [24]. The complete, full resolution
images are available in the Appendix.

an input blurry image v, and the estimated kernel basis
{kb} and mixing coefficients {mb}, we search for the cor-
responding sharp image û that minimizes the reblur loss
Lreblur (3) and is not far away from the manifold of nat-
ural images. Note that Lreblur is a function of the image
û, for fixed {kb}, {mb} and v, per Equation 2. As ex-
plained in Section 3, the blurring of the sharp image with
the non-uniform blur field can be computed efficiently with
B convolutions and one mixing operation.

We represent the manifold of natural images by means
of a Gaussian denoising prior, as proposed in methods such
as PnP [53, 52] and RED [39], and we use the denoiser
proposed by [52]. More specifically, we look for a restored
image û which minimizes Lreblur and is a fixed point of the
Gaussian denoiser with noise level σ2, Hσ , i.e.

û = arg min
u=Hσ(u)

Lreblur (5)

To solve this problem we perform 30 iterations of a
hybrid steepest descent method (HSD) [2, 8]. Following
Zhang et al. [53, 52], we anneal the noise level σ2 of the
denoiser with an exponential decay rate from 49 to 7.65.

4.1.2 Comparison on Real Blurry Images

In this section we evaluate the ability of our deblurring
procedure to generalize to real photographs containing real

motion blur. To compare on this scenario, two standard
datasets in the literature are used: Khöler [24] and Lai [27].

Quantitative results for Khöler dataset [24] are pre-
sented in Table 1 and qualitative results in Figure 4. Our
method compares favorably to state-of-the-art end-to-end
deep learning methods, that fail to generalize from the syn-
thetic dataset they were trained on. Our method also out-
performs the non-uniform motion blur estimation proposed
by Sun et al. [44] and Gong et al. [15]. When compared to
classic model-based methods (Table 2), our approach per-
forms on par, although it suffers from the limitation in es-
timated kernel size, especially for blur kernels #8, #9, #10
and #11, which are bigger than our maximum support of
33 × 33. One solution to overcome this issue is to process
the images at half resolution, however the size of the kernels
for those images still falls outside of our hypothesis. Note
also that the Köhler dataset consists of planar scenes since
these are pictures of photographs; methods such as [47] are
specifically designed to these conditions.

Lai [27] dataset is another standard benchmark that con-
tains real blurry images with very non-uniform motion blur.
The dataset has no corresponding ground truth, so it only
allows for visual comparison, which we show in Figure 5
and in the Appendix. Note that our model-based method
is competitive with state-of-the-art end-to-end approaches,
outperforming most of them except for the very recent [38],
which was specifically trained to restore saturated images.
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Method Dataset Khöler GoPro DVD RealBlurJ
DeblurGAN [25] GoPro 26.05/0.75 27.92/0.84 28.27/0.84 (27.97/0.83)
GoPro K=2 [33] GoPro (26.02/0.81) (29.23/0.92) - 27.87/0.83
SRN [46] GoPro 27.18/0.79 30.72/ 0.91 29.80/0.88 28.56/0.87
DMPHN 1-2-4 [50] GoPro 25.69/0.75 29.98/0.90 28.28/0.84 27.80/0.85
DeblurGANv2 Inc. [26] GoPro 27.25/0.79 29.49/0.88 29.55/0.93 28.69/0.87
DeblurGANv2 Mob. [26] GoPro 25.88/0.74 27.40/0.83 28.70/0.85 28.09/0.84
RealBlurJ (SRN) [38] RealBlurJ (26.57/0.80) (26.68/0.84) - (31.02/0.90)
RealBlurJ (SRN) [38] GoPro, BSD, RealBlurJ 27.85/0.81 30.30/0.90 29.98/0.89 31.38/0.91
Sun et. al [44] VOC2010 (25.22/0.77)1 (24.64/0.84)2 - -
Gong [15] BSD500 25.23/0.74 (26.06/0.86)3 - -
Ours ADE20K 28.23/0.81 27.51/0.84 28.23/0.85 27.86/0.82

Table 1: Quantitative comparison for image deblurring (PSNR/SSIM). When possible, we reproduced the results using
their available code, otherwise parenthesis are used. 1 values extracted from [33]. 2 values extracted from [50]. 3 values
extracted from [51]

Method / Dataset Köhler Köhler (except #8, #9, #10, #11)
Cho et al. [6] 28.98 31.09
Whyte et al. [47] 28.07 31.71
Xu et al. [49] 29.53 31.69
Ours 28.02 31.23

Table 2: Quantitative comparison with classic methods
over the Köhler dataset [24]. Unlike Table 1, no homog-
raphy was used while computing the PSNR to compare to
the originally reported values.

4.1.3 Comparison on Synthetic Blurry Images

State-of-the-art deblurring networks are typically trained
with datasets that synthesize motion blur by averaging sev-
eral short exposure frames. The GoPro dataset [33] is
widely used both for training and benchmarking. The DVD
dataset [43] reduces ghosting artifacts thanks to a proper
alignment of frames and the generation of new intermediate
frames before averaging. Recently, the carefully designed
RealBlur dataset [38] was presented, containing low-light
static scenes with lower illumination and more saturated re-
gions. In [38], authors also proposed to train on synthetic
images generated from the BSD dataset [30].

Following [38], we perform a quantitative evaluation of
our method using the PSNR and SSIM metrics. To do so,
the deblurred and sharp ground truth image are aligned us-
ing an homography estimated by the enhanced correlation
coefficients method [10]. method [10]. The comparison
is shown in Table 1. Our method falls behind when the
comparison is done on the same dataset used for training,
but performs comparably for the more challenging cross-
dataset scenario. Note that end-to-end deep learning meth-
ods learn to both solve the deconvolution and remove re-
maining artifacts. Qualitative comparisons on representa-

tive examples of these datasets can be found in the Ap-
pendix.

4.1.4 Blurring to Deblur

Chen et al. [5] proposed to impose cycle-consistency to de-
blurring models using a forward model, learned from con-
secutive frames of a video. The motivation was to prevent a
deblurring conditional GAN [25] from hallucinating image
content. In the same spirit, and to validate our estimated
kernels, we fine-tuned a pre-trained DeblurGAN [25] net-
work, using our estimated kernels for imposing the forward-
model consistency. Results shown in Table 3 prove that
our fine-tuning is useful to improve a DeblurGAN model,
slightly outperforming [5]. Also note that different to [5],
our method works with single images instead of videos.

Network / Test Dataset Gopro
PSNR SSIM

DeblurGAN 27.25 0.81
DeblurGAN (resume training) 27.57 0.83
DeblurGAN + [5] 28.031 0.901

DeblurGAN + ours 28.06 0.85

Table 3: Blurring to deblur. Comparison between Re-
blur2Deblur [5] and the proposed method. The incorpora-
tion of a reblur loss in training produces better results than
just resuming training. 1 No code available.

4.2. Blur Detection

Blur region detection aims at segmenting the blurred ar-
eas of a given image [1, 42, 14]. Recently, the use of syn-
thetic datasets [1] for training blur detection networks has
allowed deep learning methods surpass the performance of
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Blurred DMPHN [50] SRN [46] RealBlur [38] Ours

Figure 5: Deblurring examples on real blurry images from Lai dataset [27]. Our model-based approach is competitive
with state-of-the-art data-driven methods. Best appreciated in electronic format.

CUHK [42] HiFST [14] Ma et al. [29] Self-sup. [1] Ours
0.6944 0.7484 (0.784) (0.838) 0.8199

Table 4: Comparison on the CUHK blur detection
dataset [42], motion blur category. Following [1], we re-
port mean average precision across images of the evaluation
split. Values in parenthesis are taken from [1].

methods based on local features [42, 14]. This is a straight-
forward application of our dense kernels estimation method.
To build a segmentation mask, we group all the mixing co-
efficient images corresponding to kernels with an L2-norm
lower than a threshold (0.25 in this paper). Low L2-norm
indicates a more spread kernel. We evaluate on the standard
CUHK blur detection dataset [42], under the motion blur
category. Figure 6 shows that our approach can effectively
segment regions of the image with motion blur. Quantita-
tively, following [1] we measure the mean average precision
across the evaluation dataset, shown in Table 4. Despite not
being trained for this task, our method is competitive with
existing methods.

5. Conclusions

We revisited the problem of non-uniform kernel estima-
tion and proposed a method to predict a dense map of ker-
nels by decomposing it into a basis of image-specific kernel
elements and corresponding per-pixel mixing coefficients.

Input GT Ours Blur field

Figure 6: Blur segmentation. We use the norm of the pre-
dicted non-uniform motion blur kernels to detect regions
with motion blur. Images from the CUHK blur detection
dataset [42].

This results in a compact but non-parametric definition of
the non-uniform motion field. Qualitative results validate
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the estimated kernels and show that the model generalizes
well to real blurry images with different types of relative
camera motions, outperforming existing methods for non-
uniform blur estimation. Additionally, we validated our
model estimations in two applications: image deblurring
and blur detection, and achieved results that are competi-
tive with both deep learning-based methods and classical
variational methods.
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