english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/26892 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMassaferro Saquieres, Pablo-
dc.contributor.authorDi Martino, Matías-
dc.contributor.authorFernández, Alicia-
dc.date.accessioned2021-03-23T12:37:08Z-
dc.date.available2021-03-23T12:37:08Z-
dc.date.issued2021-
dc.identifier.citationMassaferro Saquieres, P., Di Martino, M. y Fernández, A. NTL detection : Overview of classic and DNN-based approaches on a labeled dataset of 311k customers [en línea]. EN : 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16-18 feb., 2021. DOI: 10.1109/ISGT49243.2021.9372164es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/26892-
dc.description.abstractNon-technical losses (NLT) constitute a significant problem for developing countries and electric companies. The machine learning community has offered numerous countermeasures to mitigate the problem. Yet, one of the main bottlenecks consists of collecting and accessing labeled data to evaluate and compare the validity of proposed solutions. In collaboration with the Uruguayan power generation and distribution company UTE, we collected data and inspected 311k costumers, creating one of the world’s largest fully labeled datasets. In the present paper, we use this massive amount of information in two ways. First, we revisit previous work, compare, and validate earlier findings tested in much smaller and less diverse databases. Second, we compare and analyze novel deep neural network algorithms, which have been more recently adopted for preventing NLT. Our main discoveries are: (i) that above 80k training examples, the performance gain of adding more training data is marginal; (ii) if modern classifiers are adopted, handcrafting features from the consumption signal is unnecessary; (iii) complementary customer information as well as the geo-localization are relevant features, and complement the consumption signal; and (iv) adversarial attack ideas can be exploited to understand which are the main patterns that characterize fraudulent activities and typical consumption profiles.es
dc.format.extent5 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.publisherIEEEes
dc.relation.ispartof2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16-18 feb.es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectTraininges
dc.subjectTraining dataes
dc.subjectCompanieses
dc.subjectSwitcheses
dc.subjectPerformance gaines
dc.subjectSmart meterses
dc.subjectSmart gridses
dc.subjectNon-technical losseses
dc.subjectElectricity theftes
dc.subjectAutomatic fraud detectiones
dc.titleNTL detection : Overview of classic and DNN-based approaches on a labeled dataset of 311k customers.es
dc.typePonenciaes
dc.contributor.filiacionMassaferro Saquieres Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionDi Martino Matías, Duke University, North Carolina, USA.-
dc.contributor.filiacionFernández Alicia, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
dc.identifier.doi10.1109/ISGT49243.2021.9372164-
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
MDF21.pdfVersión definitiva1,86 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons