Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/26892
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Massaferro Saquieres, Pablo | - |
dc.contributor.author | Di Martino, Matías | - |
dc.contributor.author | Fernández, Alicia | - |
dc.date.accessioned | 2021-03-23T12:37:08Z | - |
dc.date.available | 2021-03-23T12:37:08Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Massaferro Saquieres, P., Di Martino, M. y Fernández, A. NTL detection : Overview of classic and DNN-based approaches on a labeled dataset of 311k customers [en línea]. EN : 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16-18 feb., 2021. DOI: 10.1109/ISGT49243.2021.9372164 | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/26892 | - |
dc.description.abstract | Non-technical losses (NLT) constitute a significant problem for developing countries and electric companies. The machine learning community has offered numerous countermeasures to mitigate the problem. Yet, one of the main bottlenecks consists of collecting and accessing labeled data to evaluate and compare the validity of proposed solutions. In collaboration with the Uruguayan power generation and distribution company UTE, we collected data and inspected 311k costumers, creating one of the world’s largest fully labeled datasets. In the present paper, we use this massive amount of information in two ways. First, we revisit previous work, compare, and validate earlier findings tested in much smaller and less diverse databases. Second, we compare and analyze novel deep neural network algorithms, which have been more recently adopted for preventing NLT. Our main discoveries are: (i) that above 80k training examples, the performance gain of adding more training data is marginal; (ii) if modern classifiers are adopted, handcrafting features from the consumption signal is unnecessary; (iii) complementary customer information as well as the geo-localization are relevant features, and complement the consumption signal; and (iv) adversarial attack ideas can be exploited to understand which are the main patterns that characterize fraudulent activities and typical consumption profiles. | es |
dc.format.extent | 5 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.publisher | IEEE | es |
dc.relation.ispartof | 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16-18 feb. | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Training | es |
dc.subject | Training data | es |
dc.subject | Companies | es |
dc.subject | Switches | es |
dc.subject | Performance gain | es |
dc.subject | Smart meters | es |
dc.subject | Smart grids | es |
dc.subject | Non-technical losses | es |
dc.subject | Electricity theft | es |
dc.subject | Automatic fraud detection | es |
dc.title | NTL detection : Overview of classic and DNN-based approaches on a labeled dataset of 311k customers. | es |
dc.type | Ponencia | es |
dc.contributor.filiacion | Massaferro Saquieres Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Di Martino Matías, Duke University, North Carolina, USA. | - |
dc.contributor.filiacion | Fernández Alicia, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
dc.identifier.doi | 10.1109/ISGT49243.2021.9372164 | - |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
MDF21.pdf | Versión definitiva | 1,86 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons