Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/26248
Cómo citar
Título: | Empirical characterization and modeling of power consumption and energy aware scheduling in data centers |
Autor: | Muraña, Jonathan |
Tutor: | Nesmachnow, Sergio |
Tipo: | Tesis de maestría |
Palabras clave: | Green computing, Energy efficiency, Multicores, Energy model, Cloud simulation |
Fecha de publicación: | 2019 |
Resumen: | Energy-efficient management is key in modern data centers in order to reduce
operational cost and environmental contamination. Energy management
and renewable energy utilization are strategies to optimize energy consumption
in high-performance computing. In any case, understanding the power consumption
behavior of physical servers in datacenter is fundamental to implement
energy-aware policies effectively. These policies should deal with possible
performance degradation of applications to ensure quality of service.
This thesis presents an empirical evaluation of power consumption for scientific
computing applications in multicore systems. Three types of applications
are studied, in single and combined executions on Intel and AMD servers, for
evaluating the overall power consumption of each application. The main results
indicate that power consumption behavior has a strong dependency with
the type of application. Additional performance analysis shows that the best
load of the server regarding energy efficiency depends on the type of the applications,
with efficiency decreasing in heavily loaded situations. These results
allow formulating models to characterize applications according to power consumption,
efficiency, and resource sharing, which provide useful information
for resource management and scheduling policies. Several scheduling strategies
are evaluated using the proposed energy model over realistic scientific computing
workloads. Results confirm that strategies that maximize host utilization
provide the best energy efficiency. |
Editorial: | Udelar.FI. |
Financiadores: | Agencia Nacional de Investigación e Innovación FSE_1_2017_1_144789 |
Citación: | Muraña, J. Empirical characterization and modeling of power consumption and energy aware scheduling in data centers [en línea] Tesis de maestría. Montevideo : Udelar. FI. INCO : PEDECIBA, 2019. |
ISSN: | 1688-2792 |
Título Obtenido: | Magíster en Informática |
Facultad o Servicio que otorga el Título: | Universidad de la República (Uruguay). Facultad de Ingeniería |
Licencia: | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Aparece en las colecciones: | Tesis de posgrado - Instituto de Computación |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
MUR19.pdf | Tesis de maestría | 839,33 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons