Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/24382
Cómo citar
Título: | An a-contrario biometric fusion approach. |
Autor: | Di Martino, Luis Preciozzi, Javier Grompone von Gioi, Rafael Garella, Guillermo Fernández, Alicia Lecumberry, Federico |
Tipo: | Artículo |
Descriptores: | BIOMETRIA |
Fecha de publicación: | 2020 |
Resumen: | Fusion is a key component in many biometric systems: it is one of the most widely used techniques to improve their accuracy. Each time we need to combine the output of systems that use different biometric traits, or different samples of the same biometric trait, or even different algorithms, we need to define a fusion strategy. Independently of the fusion method used, there is always a decision step, in which it is decided if the traits being compared correspond to the same individual or not. In this work, we present a statistical decision criterion based on the a-contrario framework, which has already proven to be useful in biometric applications. The proposed method and its theoretical background is described in detail, and its application to biometric fusion is illustrated with simulated and real data. |
Editorial: | IEEE-CVF |
EN: | 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 14-19 Jun, pp. 822--823. |
Citación: | Di Martino, L., Preciozzi, J., Grompone von Gioi, R., y otros. An a-contrario biometric fusion approach. En : 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops [en línea]. [s.l.] : IEEE-CVF, 2020. |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
DPGGFL20.pdf | Conferencia | 861,68 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons