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Abstract

Fusion is a key component in many biometric systems: it

is one of the most widely used techniques to improve their

accuracy. Each time we need to combine the output of sys-

tems that use different biometric traits, or different samples

of the same biometric trait, or even different algorithms, we

need to define a fusion strategy. Independently of the fusion

method used, there is always a decision step, in which it is

decided if the traits being compared correspond to the same

individual or not. In this work, we present a statistical de-

cision criterion based on the a-contrario framework, which

has already proven to be useful in biometric applications.

The proposed method and its theoretical background is de-

scribed in detail, and its application to biometric fusion is

illustrated with simulated and real data.

1. Introduction

Biometrics has achieved high popularity in the last

decade as its use was extended from its typical crime re-

lated scenario to a whole new spectrum of applications. It

has been used in the health domain in order to efficiently de-

liver vaccination campaigns [13], in entertainment, security

of personal devices and human-computer interaction sys-

tems [12]. Additionally, security-related applications have

also been on the rise. Biometric systems are being used for

automatic checkpoints at countries borders and admission

control at sports venues among others. These applications

demand constant improvement in accuracy and robustness

in order to fulfill their requirements.

Biometrics can greatly benefit from the fusion of multi-

ple systems [26, 27]. In [17], the basis and formalization of

fusion strategies for biometric applications were introduced,

becoming the reference on fusion for the pattern recogni-

tion community. The fusion schemes presented there are

widely used because of its simplicity, ease of implementa-

tion and because they do not require any training process.

Several articles and technical reports validate the presented

fusion approaches [29, 11, 16, 28]. Other biometric fusion

approaches make use of trained statistical models [30, 22].

They provide better performance than the simple rules intro-

duced in [17], but with the extra cost of the training process

and parameters selection (which is not always easy).

In this work, we present a novel statistical decision

criteria for biometric fusion based on a-contrario frame-

work [3]. The a-contrario framework was already used in

the context of single biometric trait evaluation: it was used

for face recognition verification [6, 5], fingerprint identifi-

cation [4] and iris verification [21]. The aim of this work

is to extend the use of the a-contrario framework as a deci-

sion criteria for multi-trait systems by providing a general

biometric fusion approach.

2. The a-contrario approach

The a-contrario theory [2, 3] is a statistical framework

used to set detection thresholds automatically, in order to

control the number of false detections. It is based on

the non-accidentalness principle [31, 19] which informally

states that there should be no detection in noise. In the

words of D. Lowe, “we need to determine the probabil-

ity that each relation in the image could have arisen by

accident, P (a). Naturally, the smaller that this value is,

the more likely the relation is to have a causal interpreta-

tion” [19, p. 39].

A stochastic background model H0 needs to be defined,

where the structure of interest is not present and can only

arise as an accidental arrangement. We also need to define

a family of events of interest T . A statistic k(·) is to be eval-

uated on each considered test e ∈ T . We are interested in

events with k(e) ≤ k for a predefined threshold k. Accord-

ingly, we need to evaluate the probability P (k(e) ≤ k|H0).



When this probability is small enough, there exists evidence

to reject the null hypothesis and declare the event meaning-

ful. However, one needs to consider that usually multiple

events are tested. If 100 tests were performed, for example,

it would not be surprising to observe an event that appears

with probability 0.01 under random conditions. Thus, the

number of tests NT needs to be included as a correction

term, as it is done in the statistical multiple hypothesis test-

ing framework [9].

Following the a contrario methodology [2, 3], we define

the Number of False Alarms (NFA) of an event e as:

NFA(e) = NT · P (k(e) ≤ k|H0). (1)

The smaller the NFA value, the more unlikely the event e

is to be observed by chance in the background model H0;

thus, the more meaningful. One can show [2, 3] that un-

der H0, the expected number of events with NFA ≤ ε is

bounded by ε. As a result, ε corresponds to the mean num-

ber of false detections in H0. When NFA(e) ≤ ε, for a

predefined ε value, H0 is rejected as an explanation for the

event e, and an alternative hypothesis H1 is accepted. Note,

however, that a single stochastic model H0 is involved and

no stochastic model is required for H1.

In contrast, in the classic hypothesis testing framework,

explicit stochastic models are required for both, H0 and H1.

Two possible errors can be made:

• Non-detection: it occurs when H1 is rejected for an

observation e for which H1 is true. Formally, the prob-

ability of a non-detection is P (k(e) > k|H1);

• False alarm: it takes place when H1 is accepted de-

spite being false for the particular realization e. The

probability of a false alarm is P (k(e) ≤ k|H0).

P (·|H0) and P (·|H1) are determined by the probability

distributions of k(e) under the hypothesis H0 and H1.

When both distributions are known, k can be fixed using

classic methods such as the Likelihood Ratio or a Bayesian

Test. Nevertheless, in some scenarios the structure of in-

terest is hard to model, or the number of samples is small,

resulting in a poor estimation of H1. In such cases, the a-

contrario framework provides a useful alternative.

3. The a-contrario model for multibiometrics

When setting an a-contrario model, one needs to spec-

ify the family of tests, the statistic to be evaluated, and the

background model H0. In our case, a test corresponds to the

comparison of two biometric samples qi and gj . The result

of the comparison is a vector Di,j containing several results

from every biometric system being considered. If we con-

sider K different systems, then Di,j is defined as follows:

Di,j = D(qi, gj) =
(
d
(1)
i,j , . . . , d

(k)
i,j , . . . , d

(K)
i,j

)

where d
(k)
i,j represents the distance obtained between sam-

ples qi and gj in the biometric system k. Given a realization

Di,j , the NFA is computed as follows:

NFA(Di,j) = NT · P (d(Di,j) ≤ d∗|H0) (2)

where the term P (d(Di,j) ≤ d∗|H0) accounts for the prob-

ability of the particular observation under the background

model. Finally, the event should be accepted or rejected by

applying a threshold on the NFA. In the multidimensional

case, there are several ways to compute the statistic or dis-

tance d(Di,j). This is a well known problem in the fusion

of multiple pattern recognition systems. In [17], several op-

tions are presented and analyzed:

1. The minimum distance: d = min
(
d
(1)
i,j , . . . , d

(K)
i,j

)
;

2. The maximum distance: d = max
(
d
(1)
i,j , . . . , d

(K)
i,j

)
;

3. The product of the distances: d =
∏K

k=1 d
(k)
i,j ;

4. The sum of the distances: d =
∑K

k=1 d
(k)
i,j .

As the value d is compared against a threshold d∗ in the

decision, the different strategies defined above will impose

different criteria in the classification. Each of these options

is equivalent to a function F
(
d(1), . . . , d(K)

)
: RK → R

in which the fusion rule is characterized by all the configu-

rations in the fusion space R
K that produces the same dis-

tance. From an operational point of view, the probability of

occurrence of the realization being evaluated in the back-

ground model could be computed by integrating a proba-

bility distribution function that represents this model. In

the one-dimensional case this integration is done simply by

considering the interval of distances up to the value being

evaluated. In a multidimensional setup, this integration is

done over a domain Ωd∗ = {x ∈ R
K | F(x) ≤ d∗} con-

taining all possible configurations that produce the same d∗

according to the criterion used. This gives place to the fol-

lowing expression:

P
(
d(Di,j) ≤ d∗

∣∣H0

)
=

∫

Ωd∗

pH0
(x)dx. (3)

We will illustrate the methodology by the simplest case

of a two dimensional fusion scenario in which the obtained

vector is Di,j =
(
d
(1)
i,j , d

(2)
i,j

)
. As an example, we will use

the sum rule as the fusion criteria (a popular choice [17]).

Figure 1 shows in red the level lines of F and the integration

domain Ωd∗ (in blue) for a particular value of d∗.

4. The background model

A key element of the a-contrario framework is how to

define the background model H0. Because the different al-

ternatives to compute H0 depend on the data, let’s define

the usual Query and Gallery datasets:
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Figure 1: Integration domain Ωd∗ for the sum rule.

• Gallery dataset G of size N , containing the samples

g1, . . . , gN of the system stored IDs;

• Query dataset Q of size N with the corresponding sam-

ples q1, . . . , qN of the same IDs (different samples of

the same IDs).

4.1. Using only Gallery samples

The first option we analyze is not to use the Query sam-

ples at all for the background model estimation. One advan-

tage of this option is that it allows to have a pre-computed

model before knowing any Query sample. In order to obtain

such a model, we compute the distances between Gallery

samples in an “all versus all” manner, obtaining a matrix

DG,G of distances, where each element DG,G (i, j) = d
G,G
i,j

represents the distance between gallery samples i and j.

This matrix has two particular features: a) it is symmet-

ric (d
G,G
i,j = d

G,G
j,i ): a consequence of the fact that distances

DG,G(i, j) and DG,G(j, i) are equal as they are obtained

using the same samples gi and gj ; and b) all elements in the

main diagonal are zero (d
G,G
i,i = 0): they correspond to the

comparison of one sample with itself. Therefore, there are
N×(N−1)

2 useful comparisons done between samples corre-

sponding to different IDs. They are representatives of the

impostors class we are trying to model and can be used as

input for the estimation of the background model. (Recall

that in our problem H0 models the distance distribution for

samples of different IDs.)

The use of this information for modeling H0 presents

some particular advantages and drawbacks. As a benefit, it

is only based on the known Gallery samples and it could be

computed beforehand without actually doing any verifica-

tion test. As a drawback, the obtained model may suffer a

lack of precision on the production environment if signif-

icant difference exists between the features of the Gallery

and Query samples (for example, if there is a considerable

technological change between the acquisition process of the

Gallery and Query samples).

Using the available information in DG,G matrix, two dif-

ferent approaches can be designed: a general model, where

one H0 is obtained for the entire Gallery dataset or a par-

ticular model, where one H0 is obtained for each sample in

the Gallery dataset.

4.1.1 General model

In this approach, all the Gallery samples are used to obtain

a unique general model H0. In this case, the dataset used

to compute the model has
N×(N−1)

2 samples of different

IDs. This approach has the advantage that we only have

one model for all the Gallery samples, but this is also its

main drawback: in the generalization process, the model

could miss the particularities that make an ID different from

each other. Indeed, this is a well known problem: given a

biometric trait, some people are more difficult to classify

than others (Doddington Zoo) [7].

4.1.2 Particular model

An alternative to the previous strategy is to build a partic-

ular model H0 for each identity in the Gallery. With this

approach, we will have N different background models:

one for each identity. In this case, for each identity in the

Gallery, there are N − 1 samples of different individuals

that allows to model how the particular person’s biomet-

ric features differ from those of other people in the gallery

dataset. Thus, in this case, the number of useful samples for

each model is N − 1.

4.2. Background model computed at runtime

As was already stated, the pre-computed model estima-

tion strategy does not take into account the Query samples,

leading to a potentially weaker classifier since the variabil-

ity of the Query samples are not considered. To tackle

this problem, we can estimate the model during verifica-

tion. The strategy is as follows: given an input query sam-

ple qi, it is compared against all the Gallery samples gj ,

obtaining distances d
Q,G
i,j . If we compute the distance be-

tween all the query samples against all the gallery ones,

we can obtain a new matrix of distances DQ,G. Each el-

ement DQ,G (i, j) = d
Q,G
i,j represents the distance obtained

when input query qi is compared against gallery sample gj .

There are two important differences between this matrix and

DG,G used in the pre-computed model introduced before.

First, in this case the diagonal elements are not zero as they

correspond to the comparison between two different sam-

ples of the same ID. This distance should be very small in

relation to other ones (at least this is what we expect) but not



zero. Second, the matrix is not symmetric anymore. This

happens because the comparison between qi and gj sam-

ples is not equal to the comparison between qj and gi. Both

comparisons being done involve the same pairs of IDs i and

j but different associated biometric samples in each case.

Finally, there is a key difference in how the null-

hypothesis dataset is built when compared with the pre-

computed case. When the model is computed in verification

time, one does not know beforehand which particular com-

parisons correspond to the impostor class (null hypothesis).

Therefore, the only option is to compute the background

model using all the distances with the exception of the one

being evaluated (thus using N−1 samples). This will allow

to asses if the result being analyzed is rare to occur under

the background model. From the operational point of view,

if the number of available samples in the Gallery is large,

the particular distance evaluated could also be included to

model the null hypothesis without changing much the nu-

merical estimation.

4.3. Summary

The above strategies are all valid from a theoretical point

of view; in practice, however, there are differences in the

setting. Table 1 provides a general view. The accuracy of

each strategy depends on how similar the gallery and query

samples are, the robustness of the biometric system being

used, etc. In this work, we are not including a complete

analysis of the different strategies. In what follows, all the

experiments were done using the second approach defined

in section 4.1.2.

Computed Type Size Use Query dataset

Offline general
N×(N−1)

2 no

Offline particular N − 1 no

Online particular N − 1 yes

Table 1: Model H0 computing strategies.

5. Simulated example

Our first experiment is performed on simulated data.

This allow us to analyse, in a simple and controlled manner,

how the proposed method performs. Both in this section

and in the following, we report the accuracy of the differ-

ent approaches using the usual False Match Rate and False

Non-Match Rate as defined in the standard ISO/IEC 19795-

2:2007 [15].

5.1. Data generation

In order to keep the experiment as simple as possible, we

simulate a 2-classifiers fusion scheme. Both classes scores

distributions are assumed to follow Gaussian distributions;

thus the probability densities for the impostors and genuine

are:

pH0
(x) =

1

2π
√

|ΣH0
|
e
−

1

2 (x−µH0
)
T
Σ−1

H0
(x−µH0

), (4)

pH1
(x) =

1

2π
√

|ΣH1
|
e
−

1

2 (x−µH1
)
T
Σ−1

H1
(x−µH1

). (5)

The values for the mean and co-variance matrix have been

set arbitrary for the impostors and genuine classes. A rep-

resentative set of the samples generated with such distribu-

tions is represented in Figure 2.
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Figure 2: Generated data samples

5.2. Experimental evaluation

Using the previously defined probability distributions for

both genuines and impostors distances, we can simulate a

real scenario. For that, we consider a setting with N sam-

ples in the Gallery dataset and N samples in the Query

dataset, with N = 3000 identities. In this case, the num-

ber of distances for the genuines pairs is N and the number

of impostors pairs is N(N − 1).
In order to use Likelihood-Ratio as a fusion strategy, we

need to train both genuines and impostors score distribu-

tions. As explained in [22], the Likelihood-Ratio approach

ensures the best possible fusion performance when both

genuines and impostors distributions pH0
(x) and pH1

(x)
are known. In practice though, we only have estimations

p̃H0
(x) and p̃H1

(x) for them, and the performance of the

Likelihood-Ratio test will depend on the accuracy of such

estimations. On the other hand, the a-contrario approach

only requires the information provided by the impostors’

distribution. Since the number of samples for genuines and

impostors is unbalanced (N versus N(N − 1)), the esti-

mation of pH0
(x) and pH1

(x) are not equally accurate. In

some cases, this results in an advantage in using a-contrario

models for biometric applications.

In order to simulate the possible lack of genuine repre-

sentatives, we run different tests, reducing the number of

samples using to estimate the distributions. The following



trained genuines distributions parameters were experimen-

tally obtained for Sample Ratios (SR) values of 0.1 and 1.

The distributions were obtained using a Gaussian Mixture

Models (GMM), in particular the implementation in [8].

Training results for SR = 1 of genuine training sam-

ples When using the full dataset, the number of samples

is large enough to obtain good estimations for both distribu-

tions, see Figure 3. Each estimation corresponds to a single

Gaussian and the means and covariance are similar to the

original ones.
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Figure 3: Impostors and genuine estimated distributions for

a Sample Rate of 1

Training results for SR = 0.1 of genuine training sam-

ples When sampling only ten percent of the dataset, the

situation is different, see Figure 4. The impostors distribu-

tion is well estimated, as before. But the genuines distri-

bution estimation consists of the mixture of four Gaussians.

The lack of samples resulted in a poor estimation of the gen-

uine distribution.

The models trained in each case were used with both the

Likelihood-Ratio and a-contrario approaches on the testing

data partition. The obtained results are shown in Figures 5

and 6 for SR = 1 and SR = 0.1 respectively.

In the first case (SR = 1), it can be seen that the

Likelihood-Ratio approach achieves a better performance

than the obtained by each system individually and the a-

contrario based fusion. Additionally, the behavior of the

technique based on the trained probability densities is the

same as the one obtained with the ground-truth distribution.

In the second case (SR = 0.1), the sample ratio is

smaller and the accuracy of the probability densities lower,

resulting in worse performances with the Likelihood-Ratio

strategy. On the other hand, the a-contrario approach con-

tinues to work equally good as before. These results confirm
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Figure 4: Impostors and genuine estimated distributions for

sample rate of 0.1

Figure 5: Verification fusion performance for SR = 1.

the observations made by the authors in [22] and show the

robustness of the proposed approach with respect to gen-

uine’s class available training data.

6. Experiments on real data

We have done two set of experiments on real data. We

start with BSSR1 [23], a widely used dataset to test biomet-

ric fusion methods. In the second set of experiments, we

focus our attention to the fusion of several samples of the

same modality: in this case, image faces.

6.1. BSSR1 dataset

BSSR1 is a multimodal dataset by the National Institute

of Standards and Technology (NIST), composed of scores

values for different biometric modalities and algorithms.

The dataset has three partitions: Face vs Face, Fingerprint



Figure 6: Verification fusion performance for SR = 0.1

vs Fingerprint and Face vs Fingerprint. Since we were

mainly interested on face recognition, we have selected the

Face vs Face partition. This partition includes the results

obtained from two different face recognition systems aim-

ing to study a multi-algorithm fusion over the same bio-

metric modality. The data was collected from 3000 sub-

jects retrieving 3 facial images of each. The first image of

each triplet was taken as reference. The comparison against

the second and third images was saved in different datasets,

First Set and Second Set respectively, and two different sys-

tems were used to obtain the corresponding scores.

In this work we follow the same procedure used in [22]:

the available data is used in a 2-fold cross-validation

scheme. The partition of the data is done by taking random

samples for both the training and testing sets, for each ex-

periment. To ensure that no particular partition favours one

strategy over the other, the cross-validation experiment is

repeated M times. The partition was performed, of course,

into groups of different IDs (and not at individual image

level) to prevent bias. For each sub-partition of the selected

database and each fusion strategy, one ends up having a ma-

trix of FMR (τ), where each column vector FMR(τ)m,k

represents the obtained results for a particular experiment m

and fold k. In this context, τ represents the threshold that

fixes a particular working point of the system being used.

The threshold value would depend on the particular strategy

being evaluated. It would be applied over the NFA for the

a-contrario approach, the η for the likelihood-ratio strategy

and, finally, over the scores when each system is working

individually.

Following the experimental setup in [22], we perform

20 experiments in a 2-fold cross validation scenario, hav-

ing then M = 20 and K = 2. The obtained results

are summarized statistically by reporting the mean gen-

uine accept rate FMR (τ) and its 95% confidence inter-

val [FMRl (τ) , FMRu (τ)]. In order to obtain these, the

FMR metrics should be referred to a common set of FMR

values.

As explained in [22], the Likelihood-Ratio approach is

highly dependent in having an accurate estimation of the

underlying impostors and genuines classes distributions:

“However, this optimality of the likelihood ratio

test is guaranteed only when the underlying den-

sities are known. In practice, we estimate the den-

sities fgen(x) and fimp(x) from the training set of

genuine and impostor match scores, respectively,

and the performance of likelihood ratio test will

depend on the accuracy of these estimates.” [22]

This statement is of great importance since it remarks the

biggest practical difficulty in the Likelihood-Ratio frame-

work: While it is the more powerful statistical test (this

is assured by the Neyman-Pearson theorem), this requires

good knowledge of the genuines class. This dependency is

very important and can be summarized in three points:

• Classes unbalanced: In a typical scenario where pairs

of biometric samples from a population of size N is

used, just N comparisons correspond to the genuine

class, whereas N × (N − 1) comparisons in the im-

postors category are available.

• Few samples per person: Although in some particu-

lar databases there are multiple samples per each per-

son (e.g. Faces in the Wild [10]), this is not always the

case. This condition is even worse when considering

citizen databases in which usually just a few samples

per person exist.

• Intra-class variations: The biometric samples be-

longing to a particular person in a database could

present large variations due to different factors. For ex-

ample, pose or illumination variation as well as aging

could be present between two face images. Or differ-

ent sensors could be used between two successive fin-

gerprint samples. Depending on the robustness of the

particular biometric system being evaluated, these dif-

ferences may give place to big intra-class variations.

Such variations could make the estimation of the gen-

uines class inaccurate.

The proposed a-contrario approach only depends on an ac-

curate characterization of the impostors class, for which

these issues are not present. Therefore, our goal in the

experimental evaluation is to compare both classification

strategies and in particular evaluate the robustness of the

Likelihood-Ratio framework when the genuines distribution

is not very accurate. In order to simulate this situation,

we define a Sample Rate, to obtain a random set of test



SR BSSR1-Face

0.01 15
0.05 75
0.1 150
0.3 450
0.7 1050
1 1500

Table 2: Genuines training samples for different Sample

Ratio

samples from which the genuines distribution is computed.

We then test both the a-contrario and Likelihood-Ratio fu-

sion approaches by varying the genuines sample ratio SR.

The used sample ratio values and its corresponding amount

of genuines training samples for each database in a 2-fold

cross-validation scheme is shown in Table 2. The results

obtained for the BSSR1-Face dataset, for the different sam-

ple ratios used to train the genuines distribution are shown

in Figure 7.

6.2. Face recognition example

One may wonder if fusion is indeed a required function-

ality for a biometric system: as algorithms continue to im-

prove, the need to fuse results may seems to be marginal.

We will show that this is not the case with a face recog-

nition example. One of the best face recognition methods

is ArcFace [1], performing an astonishing 99.83% verifi-

cation performance on the well-known LFW dataset [10]

and protocol [18], outperforming most of the existing meth-

ods so far. Nevertheless, when we look at more challeng-

ing situations like aging, this performance drops: 95.56%:

on CALFW [32] and 95.15% on AgeDB [20], two dataset

where aging is a major characteristic. One of the ways to

improve these results is to consider more than one pair sam-

ple: assuming that we have more than one image for each

identity, then we can match a query image with each one of

the images in the gallery and fuse the score results for each

identity. For this test, we have used AgeDB, from where

we have selected those identities with at least three images.

We have 566 of those identities. We then perform the same

2-fold partition, leading to a test and train dataset of 283

elements.

Figure 8 shows the result of the experiment using two

images per identity in the gallery. System 1 and System 2

correspond to the result of ArcFace using each one of the

images in the dataset. The first interesting result is that even

in this case where the Face Recognition system performs

very well, fusion improves the results even further: both

Likelihood-Ratio and a-contrario methods increase the ac-

curacy of the system. Secondly, although there is no signif-

icant difference between both methods with a SR of 1, the

a-contrario approach clearly outperforms Likelihood-Ratio

strategy for a sample ratio of 0.1.

7. Conclusions

A novel decision criterion for biometric fusion was intro-

duced, based on the a-contrario approach. Our experiments

show that the proposed method is comparable in terms of

accuracy to Likelihood-Ratio method when the distributions

are well sampled. More importantly, the a-contrario ap-

proach outperforms the Likelihood-Ratio method when few

samples are used to estimate the genuines distribution.

The a-contrario approach has other advantages over the

Likelihood-Ratio strategy. First, there is no need to estimate

the genuines distributions as it works only with the impos-

tors distribution. This is an important point for practical

considerations: it is not always possible to have genuine

pairs to build a proper distribution. Second, the a-contrario

method can use the information of each individual, mini-

mizing the miss-classifications due to the Doddington’s Zoo

problem. Although we didn’t explore this specific point

here, we expect to do so in future works, comparing the

results with some of well known works [14, 25, 24]. Fi-

nally, the a-contrario strategy can also adapt to new sam-

ples since the impostors distribution can be built between a

Query sample and all the Gallery samples.

In future works, we also expect to address the multi-

modal configuration. Since the proposed method is applied

to the score fusion level, we expect to obtain good results

also on the multi-modal case.
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