english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/21266 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMemoli, Facundoes
dc.contributor.authorSapiro, Guillermoes
dc.date.accessioned2019-07-03T16:36:16Z-
dc.date.available2019-07-03T16:36:16Z-
dc.date.issued2001es
dc.date.submitted20190703es
dc.identifier.citationMemoli, F., Sapiro, G. Fast computation of weighted distance functions and geodesic on implicit hyper-surfaces [en línea]. Journal of Computational Physics, 2001 v. 173, no. 2. https://doi.org/10.1006/jcph.2001.6910es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/21266-
dc.descriptionPostprintes
dc.description.abstractAn algorithm for the computationally optimal construction of intrinsic weighted distance functions on implicit hyper-surfaces is introduced in this paper. The basic idea is to approximate the intrinsic weighted distance by the Euclidean weighted distance computed in a band surrounding the implicit hyper-surface in the embedding space, thereby performing all the computations in a Cartesian grid with classical and efficient numerics. Based on work on geodesics on Riemannian manifolds with boundaries, we bound the error between the two distance functions. We show that this error is of the same order as the theoretical numerical error in computationally optimal, Hamilton–Jacobi-based, algorithms for computing distance functions in Cartesian grids. Therefore, we can use these algorithms, modified to deal with spaces with boundaries, and obtain also for the case of intrinsic distance functions on implicit hyper-surfaces a computationally efficient technique. The approach can be extended to solve a more general class of Hamilton–Jacobi equations defined on the implicit surface, following the same idea of approximating their solutions by the solutions in the embedding Euclidean space. The framework here introduced thereby allows for the computations to be performed on a Cartesian grid with computationally optimal algorithms, in spite of the fact that the distance and Hamilton–Jacobi equations are intrinsic to the implicit hyper-surface. For other surface representation like triangulated or unorganized points one, the algorithm here introduced can be used after simple pre-processing of the data.es
dc.languageenes
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectImplicit hyper-surfaceses
dc.subjectDistance functionses
dc.subjectGeodesicses
dc.subjectHamilton–Jacobi equationses
dc.subjectFast computationses
dc.titleFast computation of weighted distance functions and geodesic on implicit hyper-surfaceses
dc.typeArtículoes
dc.rights.licenceLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)es
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
Ms01.pdf5 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons