Fast Computation of Weighted Distance Functions and Geodesics
on Implicit Hyper-Surfaces

Facundo Mémoli Guillermo Sapiro*
Instituto de Ingenieria Eléctrica Electrical and Computer Engineering
Universidad de la Republica University of Minnesota
Montevideo, Uruguay Minneapolis, MN 55455
memoli@Qiie.edu.uy guille@ece.umn.edu

March 2001

Abstract

An algorithm for the computationally optimal construction of intrinsic weighted distance func-
tions on implicit hyper-surfaces is introduced in this paper. The basic idea is to approximate the
intrinsic weighted distance by the Euclidean weighted distance computed in a band surrounding
the implicit hyper-surface in the embedding space, thereby performing all the computations
in a Cartesian grid with classical and computationally optimal numerics. Based on work on
geodesics on Riemannian manifolds with boundaries, we bound the error between the two dis-
tance functions. We show that this error is of the same order as the theoretical numerical
error in computationally optimal, Hamilton-Jacobi based, algorithms for computing distance
functions in Cartesian grids. Therefore, we can use these algorithms, modified to deal with
spaces with boundaries, and obtain also for the case of intrinsic distance functions on implicit
hyper-surfaces a computationally optimal technique. The approach can be extended to solve a
more general class of Hamilton-Jacobi equations defined on the implicit surface, following the
same idea of approximating their solutions by the solutions in the embedding Euclidean space.
The framework here introduced thereby allows to perform the computations on a Cartesian grid
with computationally optimal algorithms, in spite of the fact that the distance and Hamilton-
Jacobi equations are intrinsic to the implicit hyper-surface. For other surface representations
like triangulated or unorganized points ones, the algorithm here introduced can be used after
simple pre-processing of the data.

*Corresponding author

Contents

1

Introduction 3
1.1 Distance Function Computation and its Hamilton-Jacobi Formulation 3
1.2 Distance Function and Geodesics on Implicit Surfaces 5
1.3 Our Contribution e e e e 7
Distance Functions: Intrinsic vs. Extrinsic 7
2.1 The Extension of the Weight ¢ L o oL 8
2.2 Shortest Paths and Distance Functions in Manifolds with Boundary 9
2.3 Convergence Result for the Extrinsic Distance Function 10
Numerical Implementation and its Theoretical Error 14
3.1 Bounding the Offset h 16
3.2 The Numerical Error e 17

3.2.1 Numerical Error Bound of the Cartesian Fast Marching 18

3.2.2 The Interpolation Exrror o o 18

3.2.3 The Total Error e 19
Experiments 20
4.1 Geodesics on Implicit Surfaceso oL 20
Extensions 22
5.1 General Metrics: Solving Hamilton-Jacobi Equations on Implicit Surfaces 22
5.2 Non Implicit Surfaces e 24
Concluding Remarks 25
Distance Maps in Euclidean Space 27
A.1 General Properties 27
Technical Lemma 29

1 Introduction

Computing distance functions has a number of applications in numerous areas including mathe-
matical physics, image processing, computer vision, robotics, computer graphics, computational
geometry, optimal control, and brain research. In addition, having the distance function from a
seed to a target point, it is straightforward to compute the corresponding geodesic path, since this
is given by the gradient direction of the distance function, back propagating from the target toward
the seed (see for example [17]). Geodesics are used for example for path planning in robotics [34],
brain flattening and brain warping in computational neuroscience [55, 56, 58, 59, 66], crests, valleys,
and silhouettes computations in computer graphics and brain research [7, 29, 60], mesh generation
[62], and many applications in mathematical physics. Distance functions are also very important
in optimal control [57] and computational geometry for computations such a Voronoi diagrams and
skeletons [47]. It is then of extreme importance to develop efficient techniques for the accurate and
fast computations of distance functions. It is the goal of this paper to present an accurate and
computationally optimal technique for the computation of intrinsic weighted distance functions on
implicit hyper-surfaces.! It is well-know already, and it will be further detailed below, that this
weighted distances can be obtained as the solution of simple Hamilton-Jacobi equations. We will
also show that the framework here presented can be applied to a larger class of Hamilton-Jacobi
equations defined on implicit surfaces. We also discuss the application of our proposed framework
to other, non-implicit, surface representations.

1.1 Distance Function Computation and its Hamilton-Jacobi Formulation

Before proceeding, let us first formally define the concept of intrinsic weighted distances on implicit
hyper-surfaces. Let S be a (codimension 1) hyper-surface in IR? defined as the zero level set of a
function v : IR? — IR. That is, S is given by {z € IR? : ¢)(z) = 0}. We assume from now on
that ¢ is a signed distance function to the surface S. (This is a not a limitation, since as we will
discuss later, both explicit and implicit representations can be transformed into this form.) Our
goal is, for a given point p € S, to compute the intrinsic g-weighted distance function d%(p, z) for
all desired points z € S.? Note that we are referring to the intrinsic g-distance, that is, the geodesic
distance on the Riemannian manifold (S, g?f) (I stands for the d x d identity matrix) and not on
the embedding Euclidean space. For a given weight g defined on the surface (we are considering
only isotropic metrics for now), the g-distance on S (that coincides with the geodesic distance of
the Riemannian manifold (S, g?I)) is given by

dh(p) 2 inf {L(C)} &)
where)
L,(c} 2 / g (C) ICW)] dt (2)

! Although all the examples in this paper are going to be reported for 3D surfaces, the theory is valid for general
dimension hyper-surfaces, and it will be presented in this generality. A number of applications deal with higher
dimensions. For example, for the general theory of harmonic maps, in order to deal with maps onto general open
surfaces, it is necessary to have this notion of intrinsic distance [40]. In addition, higher dimensions might appear
in motion planning, when explicitly assuming that the robot is not modeled by a point, thereby adding additional
constraints to its movements.

2This can certainly be extended to any subset of S.

is the weighted length functional defined for piecewise C'! curves C : [a,b] — S, and Cp,[S] denotes
the set of curves piecewise C'! joining p to z, traveling on S. In general we will consider the
definition to be valid for any g defined over the domain that the curve may travel through .

We need to compute this distance when all the concerning objects are represented in discrete
form in the computer. Computing minimal weighted distances and paths in graph representations
is an old problem that has been optimally solved by Dijkstra [20]. Dijkstra showed an algorithm
for computing the path in O(nlogn) operations, where n is the number of nodes in the graph.
The weights are given on the edges connecting between the graph nodes, and the algorithm is
computationally optimal. In theory, we could use this algorithm to compute the weighted distance
and corresponding path on polygonal (not implicit) surfaces, being the vertices the graph nodes and
the edges the connections between them (see [32]). The problem is that this algorithm is limited
to travel on the graph edges, giving only a first approximation of the true distance. Moreover,
Dijkstra’s is not a consistent algorithm: it will not converge to the true desired distance when the
graph and grid is refined [41, 42]. The solution to this problem, limited to Cartesian grids, was
developed in [26, 50, 51, 57] (and recently extended by Osher and Helmsen, see [44]). Tsitsiklis
first described an optimal-control type of approach, while independently Sethian and Helmsen both
developed techniques based on upwind numerical schemes. The solution presented by these authors
is consistent and converges to the true distance [48, 57], while keeping the same optimal complexity
of O(nlogn). This work was later extended in [31] for triangulated surfaces (see also [7, 35] for
related works on numerics on non-Cartesian grids). We should note that the algorithm developed
in [31] is currently developed only for triangulated surfaces with acute triangles. Therefore, before
the algorithm can be applied, as an initialization step the surfaces have to be pre-processed to
remove all obtuse triangles or other polygons present in the representation [30]. Following [51], we
call to these algorithms fast marching.

The basic idea behind the computationally optimal techniques for finding accurate weighted
distances, fast marching algorithms, is to note that the distance function holds a Hamilton-Jacobi
Partial Differential Equation (PDE) in the viscosity sense; see for example [37, 49] for the general
topic of distance functions on Riemannian manifolds (and a nice mathematical treatment), and
[12, 22, 30, 43, 45, 51] for the planar (and more intuitive) case. This Hamilton-Jacobi is given by

IVsdsl =g (3)

where Vg is the gradient intrinsic to the surface, and df’s is the g-distance from a given seed point
to the rest of the manifold.?

That is, we can transform the problem of optimal distance computation into the problem of
solving a Hamilton-Jacobi equation (recall that g is known, it is the given weight), also known as
the Eikonal equation. In order to solve this equation, the current state of knowledge permits to
accurately and optimally (in a computational sense) find (weighted) distances on Cartesian grids
as well as on particular triangulated surfaces (after some pre-processing, namely the elimination of
obtuse triangles, see [6, 31]). The goal of this paper is to extend this to implicit hyper-surfaces. In
other words, we will show how to solve the above Eikonal equation for implicit hyper-surfaces S.

Recall that although all the applications in this paper will be presented for 3D surfaces, the
theory is valid for any d-dimensional hyper-surfaces, and will then be presented in this generality.

3Note that Vs and d% become the classical gradient and distance respectively for Euclidean spaces.

1.2 Distance Function and Geodesics on Implicit Surfaces

The motivations behind extending the distance map calculation to implicit surfaces are numerous:
a) in many applications, surfaces are already given in implicit form, e.g., [10, 13, 15, 24, 44, 45, 52,
64, 60], and there is then a need to extend to this important representation the fast techniques pre-
viously mentioned. We could of course triangulate the implicit surface, eliminate obtuse triangles,
and then use the important algorithm proposed in [31]. This is not a desirable process in general
when the original data is in implicit form, since it affects the distance computation accuracy due
to errors from the triangulation, and also adds the computational cost of the triangulation itself,
triangulation that might not be needed by the specific application. If for example all what it is
needed is to compute the distance between a series of points on the surface, the computational
cost added by the triangulation is unnecessary. Note that finding a triangulated representation of
the implicit surface is of course dimensionality dependent, and adds the errors of the triangulation
process. Moreover, accurate triangulations that ensure correctness in the topology are computa-
tionally expensive, and once again there is no reason to perform a full triangulation when we might
be interested just in the intrinsic distance between a few points on the implicit surface. b) it is
a general agreement that the work on implicit representations and Cartesian grids is more robust
when dealing with differential characteristics of the surface and partial differential equations on it.
Numerical analysis on Cartesian grids is much more studied and supported by fundamental results
than the work on polygonal surfaces. It is even recognized that there is no consensus about how
to compute basic differential quantities over a triangulated surface, see for example [21], although
there is quite an agreement for implicit surfaces. Moreover, representing an hyper-surface with
structured elements such as triangles is certainly difficult for dimensions other than 2 or 3. c¢) if
the computation of the distance function is just a part of a general algorithm for solving a given
problem, it is not elegant, accurate, nor computationally efficient to go back and forth from different
representations of the surface.

Before proceeding, we should note that although the whole framework and theory is here de-
veloped for implicit surfaces, it is valid for other surface representations as well after simple pre-
processing. This will be discussed later in the paper (§5). Moreover, we will lately assume that
the embedding is a distance function. This is not a limitation, since many algorithms exist to
transform a generic embedding function into a distance one; see also §5. Therefore, the framework
here presented can be applied both to implicit (naturally) and other surface representations like
triangulated ones.

In order to compute intrinsic distances on surfaces, a small but important number of techniques
have been reported in the literature. As mentioned before, in a very interesting work Kimmel
and Sethian extended the fast marching algorithm to work on triangulated surfaces. In its current
version, this approach can only be used when dealing with 3D triangulated surfaces and its extension
to deal with higher dimensions seems very involved. Moreover, it can only correctly handle acute
triangulations (thereby requiring a pre-processing step). And of course, it doesn’t apply to implicit
surfaces without some pre-processing (a triangulation).

Another very interesting approach to computing intrinsic distances, this time working with
implicit surfaces, was introduced in [15]. This will be further described below, but before that
let’s make some comments on it. First, this is an evolutionary/iterative approach, whose steady
state gives the solution to the corresponding Hamilton-Jacobi. Therefore, this approach it is not
computationally optimal for the class of Hamilton-Jacobi equations discussed in this paper.* Sec-
ond, very careful discretization must be done to the equation proposed in [15] do to the presence

“The general framework introduced in [15] is applicable beyond the Hamilton-Jacobi equations discussed in this

of intrinsic jump functions that might change the zero level-set (i.e., the surface). On the other
hand, the numerical implementation is not necessary done via the utilization of monotone schemes,
as required by our approach and all the fast marching techniques previously mentioned (thereby
having a theoretical error ©(v/Az) [18]), and better accuracy might then be obtained.

In order to compute the intrinsic distance on an implicit surface, we must then solve the cor-
responding Hamilton-Jacobi equation presented before. In order to do this in a computationally
efficient way, we need to extend the fast marching ideas in [26, 44, 50, 51, 57], which assume a
Cartesian grid, to work in our case. Since an implicit surface is represented in a Cartesian grid,
corresponding to the embedding function, the first and most intuitive idea is then to attempt to
solve the intrinsic Fikonal using the fast marching technique. The first step towards our goal is to
express all the quantities in the intrinsic Eikonal by its implicit-extended representations. What we
mean is that the intrinsic problem (we consider g = 1 for simplicity of exposition)

[Vsds(p)||=1 forp € S
{ ds(;)i 0. 4)

with p € S the seed point, is to be extended to all IR? (or at least to a band surrounding S), and

the derivatives are to be taken tangentially to {i) = 0}. Considering then the projection of the

Euclidean gradient onto the tangent space of S to obtain the intrinsic one, and denoting by d the

Euclidean extension to the intrinsic distance ds, we have to numerically solve, in the embedding

Cartesian grid, the equation

{ IVd(z)|]? — |Vd(z) - Vip(z)[> = 1 for z € IRY 5)
d(l(p)) = 0.

where [(p) is the ray through p normal to the level sets of 1.

This is exactly the approach introduced in [15], as discussed above, to build-up the evolutionary
approach, given by the following PDE:

b1+ sgn(so) (VIVOIZ = V- VoI 1) =0 (6)

where ¢o(z) = $(z,0) is the initial value of the evolving function, generally a step-like function
that tells inside from outside of the zero level-set. One then finds d(-) = ¢(-, 00).

Of course, in order to obtain a computationally optimal approach, we want to solve the station-
ary problem (5), and not its iterative counterpart (6). It turns out that the basic requirements for
the construction of a fast marching method, even with the recent extensions in [44], do not hold
for this equation. This can be explicitly shown, and has also been hinted by Kimmel and Sethian
in their work on geodesics on surfaces given as graphs of functions.’

To recap, the fast marching approach cannot be directly applied to the computation of intrinsic
distances on implicit surfaces defined on a Cartesian grid (equation (5)), and the state of the art
in numerical analysis for this problem says that in order to compute intrinsic distances one has
either to work with triangulated surfaces or has to use the iterative approach mentioned above.
The problems with both techniques were reported before, and it is the goal of this paper to present
a third approach that addresses all these problems.

paper (see also [8, 16]). Here we limit the comparison between the techniques to the equations were both approaches
are applicable.
®We have also benefited from private conversations with Stan Osher and Ron Kimmel to confirm this claim.

1.3 Owur Contribution

The basic idea here presented is conceptually very simple. We first consider a small h offset of
S. That is, since the embedding function ¢ is a distance function, with S as its zero level set, we
consider all points z in IR? for which |¢(z)| < h. This gives a region in IR? with boundaries. We
then modify the (Cartesian) fast marching algorithm mentioned above for computing the distance
transform inside this h-band surrounding S. Note that here, all the computations are as in the
works in [26, 50, 51, 57|, in a Cartesian grid. We then use this Euclidean distance function as
an approximation of the intrinsic distance on S. In §2 we show that the error between these two
distances, under reasonable assumptions on the surface S, is of the same order as the numerical
error introduced by the fast marching algorithms in [26, 50, 51, 57].° Therefore, when adapting
these algorithms to work on Euclidean spaces with boundary, adaptation described in §3, we obtain
an algorithm for the computation of intrinsic distances on implicit surfaces with the same simplicity,
computational complexity, and accuracy than the optimal fast marching techniques for computing
Euclidean distances on Cartesian grids.” In §3 we also explicitly discuss the numerical error of
our proposed technique. Examples of the algorithm here proposed are given in §4. Since Osher
and Helmsen have recently shown that the fast marching algorithm can be used to solve additional
Hamilton-Jacobi equations, we show that the framework here proposed can be applied to equations
from that class as well, this is done in §5. This section also discusses the use of the framework here
presented for non-implicit surfaces. Finally, some concluding remarks are given in §6.

2 Distance Functions: Intrinsic vs. Extrinsic

The goal of this section is to present the connection between the intrinsic distance function and
the Euclidean one computed inside a band surrounding the (implicit) surface. We will completely
characterize the difference between these two functions, mainly based on results on shortest paths
on manifolds with boundary. The results here presented will justify the use of the Cartesian fast
marching algorithms also for the computation of intrinsic weighted distances on implicit surfaces.

Recall that we are dealing with a closed hyper-surface S in IR? represented as the zero level-set
of a distance function 1 : IRY — IR. That is, S = {¢) = 0}. Our goal is to compute a g-weighted
distance map on this surface from a seed point ¢ € S. Let

% = | Ba,h) = {z € B [p(a)| < h}
€S
be the h-offset of S (here B(x, h) is the ball centered at = with radius h). It is well known that for
a smooth &, 992, is also smooth if A is sufficiently small, see Appendix A for references. €2, is then
a manifold with smooth boundary.

ur computational approach is based on approximating the solution of the intrinsic problem
0) tational h is based imating the solution of the intrinsi bl
(d%(p) is the intrinsic g-weighted distance on S).

5In contrast with works such as [1, 46], where an offset of this form is just used to improve the complexity of the
level-sets method, in our case the offset is needed to obtain a small error between the computed distance transform
and the real intrinsic distance function, see next Section.

"Although in this paper we deal with the fast marching techniques, other techniques for computing distance
functions on Cartesian grids, e.g., the fast technique reported in [11] for uniform weights, could be used as well, since
the basis of our approach is the approximation of the intrinsic distance by an extrinsic one.

”VSd?g(]?)” =g fOI‘p €S (7)
dg(q) = 0.

by that of the Euclidean (or eztrinsic) one:

{ |V, ()| =3 forp € D @)

dgzh(q) = 0.

where ¢ is a smooth extension of g in a domain containing €, and d%h(p) is the Euclidean g-
weighted distance in). Our goal is to be able to control [|d% — dthLoo(s) with h. Note that
we have replaced the intrinsic gradient Vs by the Euclidean one and the intrinsic distance d%(p)
on the surface by the Euclidean distance d%h (p) in Q. We have then transformed the problem of

computing an intrinsic distance into the problem of computing a distance in an Euclidean manifold
with boundary.

We will show that under suitable (and likely) geometric conditions on S we can indeed control
|d% — d‘;})h Lo (s) With h. In order to materialize this, we first need to briefly discuss the extension
g and to review some basic background material on Riemannian manifolds with boundary.

2.1 The Extension of the Weight g¢

We require that gls = g, and that g is smooth within ;. There are situations when one has a
readily available extension, other where the extension has to be “invented.” We call the former
natural extension and the latter general extension. Both cases, as argued below, will provide smooth
functions g.

In many applications the weight g : S — IR depends on the curvature structure of the hyper-
surface. Denoting Bs(-) : S — IR the second fundamental form of S, and A (Bs(z)) the set of
its eigenvalues, this means that

g(x) = F(A (Bs(z))

where F' is a given function. In this case it is utterly natural to take advantage of the implicit
representation by noting that Bg(z) = Hy ;(z) for z € S, where Hy is the Hessian of ¢ and
T,S is the tangent space to S at = (see [36]). The natural extension then becomes

i) = F(A(Hy, (@), z€, (9)

This extension is valid for {z € R? : |¢(x)| < 1/Ms}, where Mg absolutely bounds all principal
curvatures of S, see Appendix A.

When the weight g cannot be directly extended to be valid for a tubular neighborhood of the
hyper-surface, one has to do that in a pedestrian way. One such extension comes from propagating
the values of g along the normals of § in a constant fashion, i.e.:

9(x) = g(lls(x)), =€y (10)

where II5(-) : IR? — S stands for the normal projection onto S. This extension is well defined and
smooth as long as there is a unique foot in S for every x in the domain of the extension 2. Taking
h sufficiently small we can guarantee that Q@ O €, if S is smooth. See Appendix A for some details.

In practice this extension can be accomplished solving the equation [14]

b+ sgn(yp) V-V =0

2

with initial conditions given by any ¢(-,0) such that ¢(-,0)|s = ¢g. Then g(-) = ¢(-, 00).

2.2 Shortest Paths and Distance Functions in Manifolds with Boundary

Since we want to approximate the problem of intrinsic distance functions by a problem of distance
functions in manifolds with boundary, and to prove that the latter converges to the former, we
need to review basic concepts on this subject. We will mainly include results from [2, 3, 61]. We
are interested in the existence and smoothness of the geodesic curves on manifolds with boundary,
since our convergence arguments below depend on these properties. We will assume throughout
this section that (M,m) is a connected and complete Riemannian manifold with boundary (this
will later become the h-offset 2, with the metric §>II).

Deffinition 1 Let p,q € M, then if dp(-,-) : M x M — IR is the distance function in M (with
its metric m), a shortest path between p and q is a path joining them such that its Riemannian
length equals daq(p, q).

Now, since M is complete, for every pair of points p and g there exist a shortest path joining
them, see [2]. The following results deals with the regularity of this shortest path.

Theorem 1 Let (M, m) be a C® manifold with C' boundary B. Then any shortest path of M is
cl.

When (M,m) is a flat manifold (i.e. M is a codimension 0 subset of IR? and the metric m is
isotropic and constant), it is easy to see that any shortest path must be a straight line whenever it
is in the interior of M, and a shortest path of the boundary B when it is there. That will be the
situation for us from now on.

It might seem a bit awkward that one cannot achieve higher regularity class than C' for the
shortest paths, even by increasing the regularity of M U B, but a simple counterexample will
convince the reader. Think of M as IR? with the open unit disc removed, see Figure 1, and its
Euclidean metric. The acceleration in all the open segment (AP) is 6, and in all the open arc
(PQ) is —é,, that is, it points inwards, and has modulus 1. That is, even in most simple examples,
C? regularity is not achievable. It is, however, very easy to check that in this case 7 is actually
Lipschitz.

For the general situation, in [3, 38] the authors proved that shortest paths do have Lipschitz
continuous first derivative, what means that in fact shortest paths are twice differentiable almost
everywhere by Rademacher’s Theorem. This fact will be of great importance below.

For a more comprehensive understanding of the theory of shortest paths and distance functions
in Riemannian manifolds with boundary, see [2, 3, 38, 61] and references therein.

B

Figure 1: The minimal path is C', but not C2.

2.3 Convergence Result for the Extrinsic Distance Function

We now show the relation between the Euclidean distance in the band €2;, and the intrinsic distance
. . VAN VAN
in the surface S. Below we will denote ds = dg, and dg, = dg, .

Observation 1 Since we assume the implicit surface S to be compact, the continuous function
ds : S X § — IR attains its mazimum. Therefore we can define the diameter of the set as

diam(S) 2 sup ds(p,q) < o0
p,qES

Observation 2 Since S C Q, we have that for every pair of points p and q in S, do,(p,q) <
ds(p,q), so in view of the previous observation we have

da, (p,q) < diam(S) Vp,q € S

Observation 3 Since we are assuming § to be a smooth extension of g to all Q D Qp (we stress
the fact that the extension does not depend on h), g will be Lipschitz in Q, and we call K its

associated constant. Further, we will denote M, 2 max,esy 9(r) and My 2 SUpyzeqy (7).

We need the following Lemma whose simple proof we omit (see for example [17]).

Lemma 1 When a g-shortest path travels through an interior region, its curvature is absolutely

bounded by
5y oy (12221
(weoy \ ()

The following Lemma will be needed in the proof of the Theorem below. Its proof can be found in
Appendix B.

10

Lemma 2 Let f : [a,b] — IR be a C'([a,b]) function such that f' is Lipschitz. Let ¢ € L°°([a, b))
denote (one of) f'’s weak derivative(s). Then

b b
/ @) de = £ £ / f(@)o() da

We are now ready to present one of the main results of this Section. We bound the error between
the intrinsic distance on S and the Euclidean one in the offset €2,. As we will see below, in the
most general case, the error is of the order h'/2 (h being half the offset width). We will later discuss
that this is also the order of the theoretical error for the numerical approximation in fast marching
methods. That will lead us to conclude that our algorithm does keep the convergence rate within
the theoretically proven order for fast marching methods numerical approximation. However, for
all practical purposes, the order of convergence in the numerical schemes used by fast marching
methods is that of h, see [48]. We will also argue that for all practical purposes we can guarantee
no decay in the overall rate of convergence. We defer the detailed discussion on this to after the
presentation of the general bound below.

Theorem 2 Let A and B be two points on the smooth hypersurface S. Let dz = d%h (A, B) and
d% = d% (A, B). Then we have that for sufficiently small h

‘dg —dl ‘ < h3 C(h) diam(S)

where C(h) depends on the global curvature structure of S and on g, and approaches a constant
when h | 0 (it does not depend on A nor B, we give a precise form of C(h) in the proof).

Figure 2: Tubular neighborhood.

Proof:

Let dj, = dg, (A, B); ds = ds(A,B) and let v : [0,dy] denote a Q, g-distance minimizing arc-
length parameterized path between A = y(0) and B = ~(dy), such that ||| = 1. Let 6 = Ily(y) =
v — P(y)Vip(y) be the orthogonal projection of v onto S. This will be as smooth as 7y for small
enough h, see Appendiz A. For sufficiently small h, the boundary of 0, will be smooth, since S is
smooth and no shocks will be generated (see next Section and Appendiz A). So we can assume that
v is C' and that + is Lipschitz, since it is a shortest path within a smooth Riemannian manifold
with boundary, see §2.2 above.

It is evident that (this is a simple but key observation)

11

5 (1) g (2
Lé{’)’} =d; < dg < Lg{‘s}

since
1) SCQandgls=g
(2) 9 need not to be a g-shortest path between A and B on S.

We then have

|d% —d| < |Lg{6} —Lg{y}| = |Ly{6} — Ly{y}|
dp, . ~)
< [ansi-aeisn | a
dh pa ~ . dh ~ . ~ .
< / 9(5)II5II—9(5)||7||‘ dt + / 1G] = a1 | dt

dp, . dp
= [Ta -] @+ [a0 a1 a
0 0
dp, . dp
< Mg/O ||&—6||dt+Kg/0 Iy — 3l dt
dp, dp
- M, / I V60 -4 V() + v Ho(n)y]| dt + K, / () V)|l dt

dh dh
< Mg/o | Vip(y) - ¥ | dt + hMg/O | Hy, ()| dt + Kzhdy,

We now bound the first two terms at the end of the preceding expression.

1. We first bound the second term in the preceding expression, this will be an ingredient to the
bounding of the first term as well.

We have:

[Hy (M7l < sup I[Hy(p)oll= sup max (|A(p)], |u(p)])
{v: |[oll=1; p:d(p,S)<h} {p:d(p,5)<h}

where \(p) and p(p) denote the largest and the smallest eigenvalue of Hy(p), respectively.

Now, as we know from Appendiz A the mazimum absolute eigenvalue of Hy(p), K(p), is
bounded by

Ms

K0 < 1150

where M is the mazimum absolute eigenvalue of Hylg, that is

Ms = sup max |\ (Hy(z
s {xeg}{léisd}| (Hy(2)) |

12

where \; () stands for the i-th eigenvalue of a symmetric matriz.
Then
Ms

dp,
| I s < di=Se

2. Let us define the function f : [0,dp] — IR, f(t) = ¢ (y(t)). Then formally f(t) = Vip(y(t)) - #(t)

;)
and f(t) = Hy (y(1))[Y(1),7#)] + Vp(y(t)) - §(t). Since §(:) is Lipschitz, and 1 is reqular we
can guarantee that f(-) is also Lipschitz, so f(-) exists almost everywhere. We want to bound

/dh
0

We note first that f(0) = f(dp) =0, and |f(t)] < h, |f()| < - hM —F2— 4+ By for almost every
t € [0,dp]. In fact, we have that for those sub-intervals of [0,dy] in whzch the shortest path
travels through 0y, either f(t) = h, or f(t) = —h for the whole subinterval, and therefore
f(t) is constant for each subinterval, so f(t) =0 there. On the other hand, when + is in the
interior of Qp, it is a g-geodesic, so its acceleration is bounded by Bj, as we have seen in
Lemma 1. Therefore, we conclude that |f(t)| < [Hy () [Y(#), ¥(#)]| + Bz. Combining all this
we have that for almost every t € [0, dy],

F() ‘ dt

OIR:; sup [Hy(p)v,o][< sup max (|A(p)], [u(p)])
{ Hlol|=1; d(p,S) <h} {p:d(p,S)<h}

and the given bound follows as before.

Applying Cauchy-Schwartz inequality we obtain:

dh . dh .
/O | f(®) | dt < \/(dh) i F2(t) dt
dh . . dh dh . dh .
2 = - = —
[Py ae=gof - [T gia=- [gf a

<[] as aon (e n,)

Now using Lemma 2:

Finally,

dn) M
/0 [Vap(y) -] dt < (dn) \/h <m+B§>

Using both computed bounds, we find that

i . Ms Ms
9 _ 9
|d% —df | < diam(S) Vh [Mg T T B +M\F1_hM +K\/1 (11)

13

From the preceding Lemma we obtain:

Corollary 1 For a given point ¢ € S

g o g :
df,| (@) = di(g) inS

Remark 1 The rate of convergence obtained with the techniques shown above is of order V/h.
A quick look over the proof of convergence shows that the term responsible for the hY/? rate is

I
0

of (disjoint) intervals I; = (ai, b;) such that sgn(f) is constant (f is monotonic) within each I;,
UN I; C [0,dy] where N is the cardinality of that collection of intervals, and f(t) = 0 for t €
[0,dp]\ UN| I;. Then, we could write:

/dh
0

f(t)’ dt. All other terms have the higher rate of h. Suppose we can find a finite collection

: N . bi
fola = S|, [fod

N N
= > sgn(f) T () = f(@) = DI (0) = f(as)]
i=1 e i=1
N
< Y (F @)+ 1 (@)
i=1

< 2Nh since f(t) = (v(t)) and () travels through Qp,

obtaining a higher rate of convergence, h. It is quite convincing that cases where N = oo can
be considered pathological. We then argue that for all practical purposes the rate of convergence
achieved is h. Notwithstanding, we are currently studying the space of surfaces and metrics g for
which we can guarantee that N < oo, and advances in this subject will be reported elsewhere.

This shows that we can approximate the intrinsic distance with the Euclidean one on the offset
band ;. Moreover, as we will detail below, the approximation error is of the same order as
the theoretical numerical error in fast marching algorithms. Thereby, we can use fast algorithms
in Cartesian grids to compute intrinsic distances (on implicit/implicitized surfaces), enjoying their
computational complexity without affecting the convergence rate given by the underlying numerical
approximation scheme.

3 Numerical Implementation and its Theoretical Error

In this section we first discuss the simple modification that needs to be incorporated into the
(Cartesian) fast marching algorithm in order to deal with Euclidean spaces with manifolds. We
then propose a way of estimating the (now discrete) offset h, and bound the total numerical error
of our algorithm, thereby showing our assertion that the error with our algorithm is of the same
order than the one obtained with the fast marching algorithm for Cartesian grids (or triangulated
3D surfaces).

14

As stated before, we are dealing with the numerical implementation of the Eikonal equation
inside an open, bounded and connected domain € (this will later become the offset). The
general equation, when P(z) is the weight (it becomes g for our particular case), is given by

{HVﬂwn=Pm>Ver 12)

fr)=0
being r the seed point. Note that following the results in the previous section, we are now dealing
with the Eikonal equation in Euclidean space, and then the Euclidean gradient is used above.

The upwind numerical scheme to be used for this equation is of the form (Azy = Azy = ... = Azy = Ax)
[48]:

>i—1 maa®(f(p) —m;,0) = (Ax)” P*(p) (13

mj = min(f(p + Azej), f(p — Azéj))

where fis the numerically computed value of f for every point p in the discrete domain
D(Q, Az) 2 QN (ZAx)

Here, €; with j = 1,2,...,d, are the elements of the canonical basis of IR,

We now describe the fast marching algorithm for solving the above equation. For this we follow
the presentation in [51]. For clarity we write down the algorithm in pseudo-code form. Details on
the original fast marching method on Cartesian grids can be found in the mentioned references.

At all times there are 3 kinds of points under consideration:

e NarrowBand. These points have to them associated an already guessed value for f, and
are immediate neighbors to those points whose value has already been “frozen.”

e Alive. These are the points whose fvalue has already been frozen.

e Far Away. These are points that haven’t been processed yet, so no tentative value has been
associated to them. For that reason they have f = oo.

The steps of the algorithm are:
o Initialization:

1. Set f =0 for every point belonging to the set Alive (these are the seed/s point/s).

2. Find a tentative value of ffor every Neighbor of an Alive point and tag them Nar-
rowBand.

3. Set f: oo for all the remaining points in the discrete domain.
e Advance:

1. Beginning of loop: Let (pyin) be the point € [NarrowBand] which takes the least value
of f.

2. Insert the point py,i, to the set [Alive] and remove it from [NarrowBand].

15

3. Tag as Neighbors all those points in the discrete domain that can be written in the
form pp;, = Az €}, and belonging to [NarrowBand] U [FarAway]. If a Neighbor is
in [Far Away]|, remove it from that set and insert it to [NarrowBand].

4. Recalculate ffor all Neighbors using equation (13)
5. Back to the beginning.

The boundary conditions are taken such that points beyond the discrete domain have f: 0.

The condition that is checked all the time, and that really defines the domain the algorithm is
working within, is the one that determines if a certain point ¢ is Neighbor of a given point p that
belongs to the domain. The only thing one has to do in order to make the algorithm work in the
domain €, specified by {z € IR? : |+(x)| < h} is change the way the Neighbor checking is done.
More precisely, we should check

q € Neighbor(p) iff {(|¢/(¢q)| < h) && (g can be written like p = Az é;)}

the emphasis here being on the test “|1)(q)| < h.” We could also achieve the same effect by giving
an infinite weight to all points outside 2, that is, we treat the outside of €2;, as an obstacle. That
is, with an extremely simple modification to the fast marching algorithm, we make it work as well
for distances on manifolds with boundary, and therefore, for intrinsic distances on implicit surfaces.
This is of course supported by the convergence results in the previous section and the analysis on
the numerical error presented below.

3.1 Bounding the Offset h

We now present a technique to estimate h, the size of the offset of the hypersurface S that actually
defines the computational domain €2,. The bounds on h are very simple. On one hand, we need h
to be large enough so that the upwind scheme can be implemented, meaning that h has to be large
enough to include the stencil used in the numerical implementation. On the other hand, h has to
be small enough to guarantee that €2 remains simply connected with smooth boundaries and that
g remains smooth inside €2,.

Let Mg be as before a bound for the absolute sectional curvature of S, and let Az be the
grid size. In addition, let W be the maximal offsetting of the surface S that guarantees that the
resulting set remains connected and different parts of the boundary of that set do not touch each
other. We show below that a suitable bounding of A is

AzvVd < h < min{i,w}. (14)
Ms

Let us introduce some additional notation. We denote by cell to the unit cell of the computa-
tional grid. Let z be a point in €, we denote by n(z) the number of cells C1(x),...,Cy,) that
contain z. It is clear that if z € D(Qy, Az) (it is a grid point), then z is contained in 2¢ cells having
r as a vertex. It is also clear that n(z) < 2¢. For a given cell C we call P(C) the set of points of

D(Qp, Azx) that compose C (i.e., its vertices). We will denote by C(z) the set U?:(? Ci(z), and by
P(x) the set (U?:(ai) P (CZ(ZL’))) where the “*” means that we remove repeated elements (points).

The lower bound comes from forcing that for every z € S, all points in C(x) lie within 2 (note
of course that we want h as small as possible). That is:

16

Figure 3: We depict the situation that leads to the lower bound for h in the 2D case. In red: the curve. In
black: the centers of B(z € S,d'/>Ax). In green: the points of D(Q, Azx) that fall inside B(x,d'/?Az) for
some z € S, and in blue those that don’t.

J C@) c
€S
Once again, this constraint comes in order to guarantee that there are “enough” points to make
the discrete calculations. We try to make C(z) C C(x,l), where C(z,1) stands for the hypercube
centered in x, with side length 2[, and sides parallel to the gridding directions. The worst scenario

is when z is a point in the discrete domain, and we must have [> Az. Finally, we observe that
C(z,1) C B(x,1v/d). The condition then becomes

U B(z, AzVd) C Q = U B(z,h)

z€eS €S
which provides the lower bound, h > AzV/d.

The upper bound includes two parts. First, we shouldn’t go beyond W, since if we do so,
different parts of the offset surface might touch each other, situation which can even create a non-
simple band Q5. The second part of the upper bound comes from seeking that when traveling on
a characteristic line of ¢ at a point p of S, no shocks occur inside €. It is a simple fact that this
won’t happen if h < /\%s’ see Appendix A. It is extremely important to guarantee this both to
obtain smooth boundaries for ;, and to obtain smooth extensions of the metric g (g).

Note of course that in general, h and also Az can be position dependent. We can use an
adaptive grid, and in places where the curvature of S is high, or places where high accuracy is
desired, we can make Ax small.

3.2 The Numerical Error

It is time now to explicitly bound the numerical error of our proposed method. As stated above, it is
our goal to formally show that we are within the same order that the computationally optimal (fast
marching) algorithms for computing distance functions on Cartesian grids. Note that the numerical
error for the fast marching algorithm on triangulated surfaces has not been reported, although it
is of course bounded by the Cartesian one (since this provides a particular “triangulation”).

17

3.2.1 Numerical Error Bound of the Cartesian Fast Marching

The aim of this section is to bound a quantity that measures the difference between the numerically

computed value d%(p,-) and the real value d%(p,-). Any such quantity will be comparing both
functions on &, but in principle the numerically computed value will not be defined all over the
hypersurface. So we will be dealing with an interpolation stage, that we comment further below in
83.2.2.

-~

Let us fix a point p € S, and let f(-) be the numerically computed solution (according to (13)),
and f(-) the real viscosity solution of the problem (12). The approximation error is then bounded
by (see [48])

D=

max |f(p) — f(p)| < CL(Ax)

15
pED(N,Ax) ()

where C7, is a constant. In practice, however, the authors of [48] observed first order accuracy. As
we have seen, we have also find an error of order h'/2 for the general approximation of the weighted
intrinsic distance on § with the distance in the band €, and a practical order of h (see Remark 1
and Theorem 2).

Before proceeding with the presentation of the whole numerical error of our proposed algorithm,

we need the following simple Lemma whose proof we omit.

Lemma 3 For a convezr set D C 2, and y,z € D, f satisfies

£ (2) = FW) < NPl oyllz =yl

Remark 2 Using the preceding Lemma and (15), it is easy to see that for x such that C(x) C §:

~ ~

17(p) — Flg)] < 2C1(A2)% + ||P| ooy VdAZ, Vp,q € P(x) (16)

a relation we will shortly use.

3.2.2 The Interpolation Error

Since following our approach we are now computing the distance function in the band €2, in the
corresponding discrete Cartesian grid, we have to interpolate this to obtain the distance on the
zero level-set S. This interpolation produces a numerical error which we now proceed to bound.

Given the function ¢ : D(2, Az) — IR, we define the function Z (¢) : @ — IR through an
interpolation scheme. We will assume that the interpolation error is bounded in the following

way:®

yZEI()m)K(y) —Z(0)(z)| < Zgl}gx(};)C(z) —ZGHIP}&)C(Z)

for every z € Q)

80One may imagine several interpolation schemes satisfying this not-stringent-at-all condition.

18

3.2.3 The Total Error

We now present the complete error (numerical plus interpolation) introduced by our algorithm,
without considering the possible error in the computation of ¢ (or in other words, we assume that
the weight was already given in the whole band Q).

Let p be a point in S. We denote by

° dg(p, -) : § = IR the intrinsic g-distance function from p to any point in S.

° di(p, -) : Q, — IR the g-distance function from p to any other point in €.

. dz(p,') : D(Qp, Az) — IR the numerically computed value of d‘z(p,-) to any point in the
discrete domain.

A (di) (p,+) : S — IR the result of interpolating di (that’s only specified for points in
D(Qy, Az)) to points in IR D S.

&) - ())

The goal is then to bound , and we proceed to do so now.

L=(8)
Let z be in S and y in P(z), then:
d%(p,z) — T <dg) (p,z)| < |d%(p,) — d(p,)| + |di(p,x) — d(p,y)| (17)

—

d (p,y) — di (p,y) ég(p, y)—ZI (@) (p,)

and using Proposition 2, Lemma 3, (15) and simple manipulations (in that order) we obtain:

+ -

< C(h)diam(S)h? + M|z —y| + CrL(Ax):

d%(p,x) — T @) (p,)

Fo) - min @
+ (yéngé) L (0, y) ,ain 3 (,y))

The last term can be dealt with using (16). Taking into account that we will always choose
h = C? Az+/d for some constant C,, > 1 (as we saw in §3.1), we conclude:

< (Az)? C(AzL;S) (18)

d§(p,-) — T (;@ (p:)

where C(Ax;S) goes to a constant (that depends on §) as Az | 0, and this provides the desired
bound. Note that as announced below, the error of our algorithm is of the same (theoretical) order
as the error of the fast marching on Cartesian grids, thereby justifying our approach.

L>(S)

We have then obtained that the use of an Euclidean approximation in the band €2; to the
intrinsic distance function on the level-set S doesn’t change the order of the whole numerical
approximation. In the most general case, the theoretical bound is of order h/2, while for all
practical purposes is of order & (when we replace in the computation above the practical bounds
for the fast marching algorithm and for the distance approximation).

To conclude, let’s point out that since we are working within a narrow band (2;,) of the surface
S , we are actually not increasing the dimensionality of the problem. We can then work with a
Cartesian grid while keeping the same dimensionality as if we were working on the surface.

19

4 Experiments

We now present a number of 3D examples of our algorithm. Recall that although all the examples
are given in 3D, the theory presented above is valid for any dimension d > 3.

Two classes of experimental results are presented. We show a number of intrinsic distance
functions for implicit surfaces, as well as geodesics computed using these functions. In order to
compute interesting geodesics, we use also non-uniform weights, permitting the computation of
crest/valleys, and optimal paths with obstacles. We also experimentally compare our results with
those obtained on triangulated surfaces using the fast marching technique developed by Kimmel
and Sethian (for this we use the results and software reported in [6]).

Figures 4, 5, and 6 show the intrinsic distance function for implicit surfaces computed with the
method here proposed (¢ = 1). An arbitrary seed point on the implicit surface has been chosen, and
pseudo colors are used to improve the visualization. Red corresponds to low values of the distance
and blue to the high ones. We observe that, as expected, the distance (colors) vary smoothly,
and that close points have similar colors and far points have very different colors (close and far
measured on the surface of course).

In Figure 7 we compare the result of our approach with that of fast marching on a triangulated
surface (this later computed with the package reported in [6]), while in Figure 8 we show level lines
of the intrinsic distance function computed with the technique here proposed.

Before concluding this part of the experiments, let’s give some technical details on the imple-
mentation. The code for the examples in this paper was written in C++. For visualization purposes,
VTK was used. Most of the “hard code” was done taking advantage of Blitz++’s double templa-
tized arrays and related routines, see [9]. The implicit models used in this paper were obtained
from [65] (other techniques, e.g., [39], could be used as well). All the code was compiled and run in
a 450 M hz Pentium III, with 256 Mb of RAM, working under Linux (RedHat 6.2). The compiler
used was egcs-2.91.66 and the level of optimization was 3. In the table below we show running
times of the intrinsic distance map algorithm for some of the implicit models we used, along with
the corresponding offset-value (h) and size and number of grid points in €, for each model.

‘ Model Size #D(Qp,Az) h Running Time (secs) ‘
Brain 122 x 142 x 124 168, 603 1.75 9.4
Bunny 81 x 80 x 65 38,107 1.75 1.99
Knot 80 x 81 x 44 16,095 1.0 0.76
Sphere 70 x 70 x 70 11,800 1.75 0.65
Torus 64 x 64 x 64 21,704 1.75 1.16
Teapot 80 x 55 x 46 24,325 1.75 1.22

4.1 Geodesics on Implicit Surfaces

To find geodesic curves on the implicit surface, we back track starting from a specified target
point toward the seed point, while traveling on the surface in the direction given by the (negative)
intrinsic-distance gradient. This means that after we have computed the intrinsic distance function
as explained above, we have to solve the following ODE (which obviously keeps the curve on S):

{ g = =Vydh, (7)
10)=peSs

20

Figure 4: Distance maps from a point on the sphere, torus and teapot (three views are presented for each
model).

where de%h (p) 2 Vd?lh (p) — (Vd%h (p) - V’(/)(p)) Vi (p) is the gradient of d%h at p € S projected
onto the tangent space to S = {1 = 0} at p. Since we must discretize the above equation, one can
no longer assume that at every instant the geodesic path « will lie on the surface, so a projection
step must be added. In addition, since all quantities are known only at grid points, an interpolation
scheme must be used to perform all evaluations at positions given by y. We have used a simple
Runge-Kutta integration procedure, with adaptive step, namely an ODE23 procedure.

Before presenting examples of geodesic curves, we should note that we are assuming that de%
h

is a good approximation of ngf; (and not just d‘gh a good approximation of d“,’S as we have previously
proved). Bounding the error between these two gradients, e.g., using the framework of viscosity
solutions, is the subject of current work.

The figures described next illustrate the computation of geodesic curves on implicit surfaces for
different weights ¢g. In all the figures the geodesic curve is drawn on top of the surface, which is
colored as before, colors indicating the intrinsic weighted distance.

In Figure 9 we present both the geodesic curve computed with our technique and the one
computed with the fast marching algorithm on triangulated surfaces following the implementation
reported in [6].

21

Figure 5: Distance map from a point on a portion of white/gray matter boundary of the cortex.

In Figure 10 we show the computation of sulci (valleys) on an implicit surface representing the
boundary between the white and gray matter in a portion of the human cortex (data obtained from
MRI). Here the (extended) weight g is a function of the mean curvature given by [6]

p
(o) = + (M(2) ~ i M))

where M stands for the mean curvature of the level sets of v, so it is computed simply as M(z) =
At(z). In the example presented we used w = 100 and p = 3. More details on the use of this
approach for detecting valleys (and creases) can be found in [6] and in the references therein.

In Figure 11 we show the computation of geodesic curves with obstacles on implicit surfaces.
This is an important computation for topics such as motion planning on surfaces.

5 Extensions

5.1 General Metrics: Solving Hamilton-Jacobi Equations on Implicit Surfaces

Since the very beginning of our exposition we have restricted ourselves to isotropic metrics. As
stated in the introduction, this already has a tremendous amount of applications, and just a few
were shown in the previous section. Since the fast marching approach has been recently extended to
more general Hamilton-Jacobi equations by Osher and Helmsen [44], we are immediately tempted
to extend our framework to these equations as well (these equations have applications in important
areas such as adaptive mesh generation on manifolds, [27], and semiconductors manufacturing).

22

Figure 6: Distance map from one seed point on a knot. In this picture we evidence that the algorithm
works well for quite convoluted geometries (as long as h is properly chosen). Note how points close in
the Euclidean sense but far away in the intrinsic sense receive very different colors, indicating their large
(intrinsic) distance.

Then, we are led to investigate the extension of our algorithm to general metrics of the form,
G : S — IR%¥? that is, a positive definite 2-tensor. Our new definition of weighted length becomes

A b . .
La(c} & [Vaewica.cw) d
a
and the problem is to find for every z € S (for a fixed p € S)

E

d§ (z,p Anf {La(0)} (19)

As before, we attempt to solve the approximate problem in the band €, with an extrinsic distance:

d§ (z,p) £ inf (L)} (20)

Cpa [,

where

b
Le{c) 2 / JECw)ew,cw) dt

for an adequate extension G of G. The solution of the extrinsic problem satisfies (in the viscosity
sense) the Eikonal equation

23

Figure 7: Distance map from a single seed point (situated at the nose) on an implicit bunny (¢ = 1). The
figure on the left was obtained with the implicit approach here presented, while the one on the right was
derived with the fast marching on triangulated surfaces technique.

(G) (@)[VdS,,vdS] =1 (21)

The first issue now is the numerical solvability of the preceding equation using a fast marching type
of approach. Osher and Helmsen, [44], have extended the capabilities of the fast marching to deal
with Hamilton-Jacobi equations of the form

H(z,Vf) = a(z)
for geometrically based Hamiltonians H(z,p) : Q(C IRY) x IR — IR that satisfy

H(z,p) >0 if 7#0 (22)
H(z,p) is homogeneous of degree 1 in p’

We easily observe that these conditions hold for (21) considering H(z, p) 2 (G=1)(z)[p,], and
therefore we can solve these type of Hamilton-Jacobi equations (the extrinsic problem) with the
extended fast marching algorithm.

In order to show that our framework is valid for these equations as well, all what we basically
need to do is to prove that the extrinsic distance (20) on the offset €2, converges to the intrinsic one
on the implicit surface S, i.e., (19). This can be done repeating the steps in the convergence proof
previously reported in §2.3 for isotropic metrics. Combining this with the results of Osher and
Helmsen we then obtain that our framework can be applied to a larger class of Hamilton-Jacobi
equations.

5.2 Non Implicit Surfaces

The framework we presented was here developed for implicit surfaces, although it applies to other
surface representations as well. First, if the surface is originally given in polygonal or triangulated
form, or even as a set of unconnected points and curves, we can use a number of available techniques,
e.g., [33, 39, 46, 54, 63, 65] (and some very nice public domain software [39]), to first implicitize

24

Figure 8: Top: Level lines for the intrinsic distance function depicted in Figure 7 (left). Bottom: Level lines
for the intrinsic distance function depicted in Figure 4 (second row). In both rows, the (22) levels shown
are 0.03, 0.05, 0.1, ..., 0.95, 0.97 percent of the maximum value of the intrinsic distance, and the coloring
of the surface corresponds to the intrinsic distance function. Three views are presented. Note the correct
separation between adjacent level lines. Note also how these lines are “parallel”.

the surface and then apply the technique here proposed.” Note that the implicitation needs to be
done only once per surface as a pre-processing step, and will remain valid for all subsequent uses
of the surface. Moreover, as we have seen, all what we need is to have a Cartesian grid in a small
band around the surface S. Therefore, there is no explicit need to perform an implicitation of the
given surface representation. For example, if the surface is given by a cloud of unconnected points,
we can compute distances intrinsic to the surface defined by this cloud, as well as intrinsic geodesic
curves, without explicitly computing the underlying surface. All what is needed is to embed this
cloud of points in a Cartesian grid and consider only those points in the grid at a distance h or less
from the points in the cloud. The computations are then done on this band.

6 Concluding Remarks

In this article we have presented a novel computationally optimal algorithm for the computation
of intrinsic distance functions and geodesics on implicit hyper-surfaces. The underlying idea is
based on using the classical Cartesian fast marching algorithm in an offset bound around the given
surface. We have provided theoretical results justifying this approach and presented a number of
experimental examples. The technique can also be applied to 3D triangulated surfaces, or even
surfaces represented by clouds of unconnected points, after these have been embedded in a Cartesian
grid with proper boundaries. The conclusion is that there is no need to further develop algorithms
for intrinsic distances and geodesics on hyper-surfaces, original Cartesian approaches are sufficient.
We have also discussed that the approach is valid for more general Hamilton-Jacobi equations as
well.

9The same techniques can be applied to transform any given implicit function into a distance one.

25

Figure 9: Distance map and geodesic curve between two points on an implicit bunny. We show two geodesics
superimposed, the black one is the one obtained via the implicit back propagation described in the text, while
the white one is obtained when performing the back propagation computation in the triangulated surface.
It is important to note that in both cases the distance function used is the one computed with our implicit
approach; to feed the data to the triangulated surfaces back-propagation algorithm, we first interpolated the
intrinsic distance to points onto the triangulated surface. We can clearly see that both geodesics overlap
almost entirely.

Many questions remain open. First, we are currently working on tighter bounds for the error
between d?lh and d%, as well as bounds for the error between their corresponding derivatives. We
are interested in extending the framework here presented to the computation of distance functions
on high codimension surfaces and general embeddings. More generally, it remains to be seen what
class of intrinsic Hamilton-Jacobi (or in general, what class of intrinsic PDE’s) can be approximated
with equations in the offset band €. In an even more general approach, what kind of intrinsic
equations can be approximated by equations in other domains, being offsets just a particular and
important example. Even if fast marching techniques do not exists for these equations, it might be
simpler and even more accurate to solve the approximating equations in these domains than in the
original surface S. The framework here presented then not only offers a solution to a fundamental
problem, but it also opens the doors to a new area of research.

26

Acknowledgments

Many colleagues and friends helped us during the course of the work here reported, and they
deserve our most sincere acknowledgment. Prof. Miguel Paternain, in the early stages of this
work, pointed out very relevant references. Prof. Stephanie Alexander, Prof. David Berg, and
Prof. Richard Bishop helped us with our questions about geodesics on manifolds with boundaries.
Prof. Stanley Osher helped us with issues regarding the fast marching algorithm in general, and
his recent extensions in particular, while Prof. Ron Kimmel discussed with us topics related to
his triangulated work and provided general comments on the paper. Prof. Osher also helped with
the literature on rate of convergence of Hamilton-Jacobi numerical approximations. Prof. Omar
Gil helped us with some deep insights into technical aspects of the work. This work benefited
from rich conversations with Alberto Bartesaghi (who also provided us with some of his code to
extract geodesics in triangulated surfaces), Cesar Perciante, Luis Vasquez, Federico Lecumberry,
and Prof. Gregory Randall. We also enjoyed important discussion with Prof. Vicent Caselles on
the density of zeros of general functions. We also thank Prof. Luigi Ambrosio for his comments on
the regularity of level-sets of distance functions. We are indebted to Alvaro Pardo for his careful
reading of the manuscript and for the suggestions he made. Prof. H. Zhao provided some of the
implicit surfaces. FM in particular wants to thank Omar Gil, who has been a great and patient
teacher, and Gregory Randall for his constant support and encouragement. FM performed part of
this work while visiting the University of Minnesota. This work was partially supported by a grant
from the Office of Naval Research ONR-N00014-97-1-0509, the Office of Naval Research Young
Investigator Award, the Presidential Early Career Awards for Scientists and Engineers (PECASE),
a National Science Foundation CAREER Award, by the National Science Foundation Learning and
Intelligent Systems Program (LIS), by the Comisién Sectorial de Investigacién Cientifica (CSIC),
the Comisién Académica de Posgrado (CAP), and Tecnocom through a scholarship to FM.

A Distance Maps in Euclidean Space

We now present a few important results on distance maps. These has been mainly adapted (and
adopted) from [4, 5, 25, 53].

A.1 General Properties

Wherever ¢ is smooth we know that it satisfies the Fikonal equation

IVl =1 (23)

The distance function satisfies this PDE everywhere in the viscosity sense [28, 19]. It is also well
known that within a sufficiently small neighborhood of § = {¢) = 0}, v(-) is smooth, or at least as
smooth as S. These assertions can be made precise through the following Lemma from [23]:

Lemma 4 Let S be a C* (k > 2) codimension 1 closed hypersurface of IR®. Then, the signed
distance function to S is C*(U) for a certain neighborhood U of S.

Differentiating | V||> = 1 we obtain

D(Vi) Vip =0

27

Therefore,
Hy, Vi) =0 (24)

meaning that the normal to S at p is an eigenvector of the Hessian, associated to the null eigenvalue.
Differentiating again we obtain

D*pVip + (D*)* =0 (25)

The next Lemma, whose detailed proof can be found in [4], is mainly based in the rela-
tions (24) and (25), and it is used to verify that the function y : (—e,¢) — IR defined by
p(t) = Hy(po +tVi(po)) (po is any point in the manifold {¢) = 0}) satisfies the following ODE:

A(t) + p(t) =0 te (—ee)

Lemma 5 The eigenvectors of Hy, are constant along the characteristic lines z(s) = xo+sVip(z(s))
(arc length parametrized, xo is a point onto S) of 1 within any neighborhood where it is smooth,
and the eigenvalues vary according to

Ai(0)

Ai(s) = sAi(0) +1

We use the above formula to bound the maximum offset |¢| of {1) = 0} that keeps {¢) = €} smooth,
we just take |€| (maxlgigd_l |)\1(0)|) < 1.

We now obtain bounds on the eigenvalues of the Hessian of the distance function:

Corollary 2 The eigenvalues A\i(p) of Hy(p) (principal curvatures of {x : (x) = 1(p)}) are
absolutely bounded by

Ms
S T Ms

where Mg absolutely bounds all eigenvalues of Hy(p), p € S; and |1(p)| is sufficiently small.

|Ai(p)

To conclude, let’s present some concepts on projections onto the implicit surface S, zero level-set
of the distance function . It is clear that the projection of a point p € IR% onto S is given by

Ils(p) = p — (p)Vib(p).

This projection is well defined as long as there is only one x € S such that IIs(p) = z. This can
be guaranteed when working within a small tubular neighborhood of a smooth surface S. Moreover,
this map is smooth within a certain tubular neighborhood of S [53]:

Theorem 3 If S C IRY is a compact C* (k > 2) codimension 1 hypersurface, then there is a
h(S) > 0 such that the map Ils is well defined and belongs to C*~*({z : d(x,S) < h}, RY).

28

B Technical Lemma

Lemma

Let f: [a,b] — IR be a C'([a,b]) function such that f' is Lipschitz. Let ¢ € L°([a,b]) denote (one
of) f"’s weak derivative. Then one has:

b b
/ @) de = £ £ / f(@)o() da

Proof:
Let ext(f') denote the Lipschitz extension of f' to all IR given by

f'(a) for z <a

ext(f')(z) = { f(x) for x € [a,b]
1'(b) for z>b

Then let ext(f) be given by any (bounded) primitive of ext(f’), that is ext(f) = [ext(f’). Let p €
L*®IR denote ext(f')’s weak derivative, and we have that Pligp) and ¢ coincide as weak derivatives
of f. Let {ne(*) H{e>0y be a family of bounded support mollifiers. Then we define the function

f€ = 6£Ct(f) * Te

It is clear that we will have

(a)
€l0
fe = ext(f) over compact sets of IR

(b)
el0
Il = ext(f') over compact sets of IR

(c)

! 0 @ locally in L*(IR)

Since f! € C*(IR) we can use integration by parts to conclude that:

b 9 b b
/ Fa)de = I — / fole) () da

Now the left hand side will converge to f: f’2($) dzx in view of (b); the first term in the right hand side

will obviously converge to ff'|2. For the remaining term we observe the following ,using Cauchy-
Schwartz inequality (let <,>: L?([a,b]) x L*([a,b]) — IR denote L*([a,b])’s internal product):

b b
= |<flfe> = <o f>| =<l 1>+ <1 =]

o—a) ((w17) 1= ooy + (s 1761) 157 = el

z€la,b] {z€la,0]}

IN

29

Now, everything is under control since

max "(z)| < oo ([a
(max [7(0)] < o)

Hence we have proved

b b
/ felo) f () de S / f(@)p() de

the last step of the proof.

References

[1]

2]

3]

[4]

[7]

[8]

[9]

D. Adalsteinsson and J.A. Sethian, “A fast level set method for propagating interfaces,” .J.
Comp. Physics 118, pp. 269-277, 1995.

R. Alexander & S. Alexander, “Geodesics in Riemannian manifolds with boundary,” Indiana
University Mathematics Journal 30:4, 1981.

S. Alexander, I.D. Berg, and R.L. Bishop, “The Riemannian obstacle problem,” Illinois Journal
of Mathematics 31:1, Spring 1987.

L. Ambrosio and N. Dancer, Calculus of Variations and Partial Differential Equations, Topics
on Geometrical Evolution Problems and Degree Theory, Springer-Verlag, New York, 2000.

L. Ambrosio and H.M. Soner, “Level set approach to mean curvature flow in arbitrary codi-
mension,” J. Diff. Geom. 43, pp. 693-737, 1996.

A. Bartesaghi and G. Sapiro, “A system for the generation of curves on 3D brain images,”
Human Brain Mapping, to appear.

T. J. Barth and J. A. Sethian, “Numerical schemes for the Hamilton-Jacobi and level set
equations on triangulated domains,” Journal of Computational Physics 145, pp. 1-40, 1998.

M. Bertalmio, L. T. Cheng, S. Osher, and G. Sapiro, “Variational problems and partial dif-
ferential equations on implicit surfaces: The framework and examples in image processing and
pattern formation,” IMA University of Minnesota Preprint, June 2000.

Blitz++ website: www.oonumerics.org/blitz

[10] J. Bloomenthal, Introduction to Implicit Surfaces, Morgan Kaufmann Publishers, Inc., San

Francisco, California, 1997.

[11] M. Boue and P. Dupuis, “Markov chain approximation for deterministic control problems with

affine dynamics and quadratic cost in the control,” SIAM J. Numer. Anal. 36, pp. 667-695,
1999.

[12] A. M. Bruckstein, “On shape from shading,” Comp. Vision Graph. Image Processing 44, pp.

139-154, 1988.

[13] V. Caselles, R. Kimmel, G. Sapiro, and C. Sbert, “Minimal surfaces based object segmenta-

tion,” IEEE-PAMI, 19:4, pp. 394-398, April 1997.

30

[14] S. Chen, B. Merriman, S. Osher, and P. Smereka, “A simple level set method for solving Stefan
problems,” Journal of Computational Physics 135, pp. 8, 1995.

[15] L. T. Cheng, The Level Set Method Applied to Geometrically Based Motion, Material Science,
and Image Processing, PhD Thesis Dissertation, UCLA, June 2000.

[16] L. T. Cheng, P. Burchard, B. Merriman, and S. Osher, “Motion of curves constrained on
surfaces using a level set approach,” UCLA CAM Report 00-32, September 2000.

[17] L. D. Cohen, and R. Kimmel, “Global minimum for active contours models: A minimal path
approach,” International Journal of Computer Vision 24, pp. 57-78, 1997.

[18] M.G. Crandall and P.L. Lions “Two approximations of solutions of Hamilton-Jacobi equa-
tions,” Math. of Comp. 43:167, pp. 1-19, July 1984.

[19] M.G. Crandall and P.L. Lions, “Viscosity solutions of Hamilton-Jacobi equations,” Transac-
tions of the American Mathematical Society 277:1, May 1983.

[20] E. Dijkstra, “A note on two problems in connection with graphs,” Numerische Math. 1, pp.
269-271, 1959.

[21] M. Desbrun, M. Meyer, P. Scréeder, and A. Barr, “Discrete differential-geometry operators in
nD,” Caltech, USC Report, July 22, 2000.

[22] S. Fomel, “A variational formulation of the fast marching Eikonal solver,” Stanford Exploration
Project, Report SERGEY, May 1, pp. 357-376, May 2000.

[23] R.L. Foote, “Regularity of the distance function,” Proceedings of American Mathematical So-
ciety 92:1, September 1984.

[24] S. F. Frisken, R. N. Perry, A. Rockwood, and T. Jones, “Adaptively sampled fields: A gen-
eral representation of shape for computer graphics,” Computer Graphics (SIGGRAPH), New
Orleans, July 2000.

[25] J. Gomes and O. Faugeras, “Representing and evolving smooth manifolds of arbitrary codi-
mension embedded in IR™ as the intersection of n hypersurfaces: The vector distance functions,”
RR-4012 INRIA, Oct. 2000.

[26] J. Helmsen, E. G. Puckett, P. Collela, and M. Dorr, “Two new methods for simulating pho-
tolithography development in 3D,” Proc. SPIE Microlithography IX, pp. 253, 1996.

[27] P. Hoch and M. Rascle “Hamilton-Jacobi equations on a manifold and applications to grid
generation or refinement,” http://www-math.unice.fr/~hoch/psfiles/hamja.ps

[28] H. Ishii, “A simple direct proof of uniqueness for solutions of the Hamilton-Jacobi equations
of Eikonal type,” Proc. Amer. Math. Soc. 100:2, pp. 247-151, 1987.

[29] N. Khaneja, M.I. Miller, and U. Grenander, “Dynamic programming generation of geodesics
and sulci on brain surfaces,” IEEE Trans. on Pattern Analysis and Machine Intelligence 20:11,
pp-1260-1265, November, 1998.

[30] R. Kimmel, “Numerical geometry of images: Theory, algorithms, and applications,” Technion
CIS Report 9910, October 1999.

31

[31] R. Kimmel and J. A. Sethian, “Computing geodesic paths on manifolds,” Proc. National
Academy of Sciences 95:15, pp. 8431-8435, 1998.

[32] N. Kiryati and G. Székely, “Estimating shortest paths and minimal distances on digitized three
dimensional surfaces,” Pattern Recognition 26, pp. 1623-1637, 1993.

[33] V. Krishnamurthy and M. Levoy, “Fitting smooth surfaces to dense polygon meshes,” Com-
puter Graphics, pp. 313-324, 1996.

[34] J. C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, Boston, MA, 1991.

[35] F. Lafon and S. Osher, “High order two dimensional nonoscillatory methods for solving
Hamilton-Jacobi scalar equations,” Journal of Computational Physics 123, pp. 235-253, 1996.

[36] J. M. Lee, Riemannian Manifolds, An Introduction to Curvature, Springer-Verlag, New York,
Inc., 1997.

[37] C. Mantegazza and A.C. Menucci, “Hamilton-Jacobi equations and distance functions on Rie-
mannian manifolds,” http://cvgmt.sns.it/papers/manmen99/.

[38] A. Marino and D. Scolozzi, “Geodetiche con ostacolo,” Boll. Un. Mat. Ital. 6:2-B, pp. 1-31,
1983.

[39] S. Mauch, “Closest point transform,”
www.ama.caltech.edu/~ seanm/software/cpt/cpt.html.

[40] F. Memoli, G. Sapiro, and S. Osher, “Harmonic maps onto implicit manifolds,” pre-print,
March 2001.

[41] J. S. B. Mitchell, “An algorithmic approach to some problems in terrain navigation,” Artificial
Intelligence 37, pp. 171-201, 1988.

[42] J. S. B. Mitchell, D. Payton, and D. Keirsey, “Planning and reasoning for autonomous vehicle
control,” International Journal of Intelligent Systems 2, pp. 129-198, 1987.

[43] S. Osher, “A level-set formulation for the solution of the Dirichlet problem for Hamilton-Jacobi
equations,” SIMA J. Numer. Anal. 24, pp. 1145, 1993.

[44] S. J. Osher and R. P. Fedkiw, “Level set methods,” ULCA CAM Report 00-07, February 2000.

[45] S. J. Osher and J. A. Sethian, “Fronts propagation with curvature dependent speed: Algo-
rithms based on Hamilton-Jacobi formulations,” Journal of Computational Physics 79, pp.
12-49, 1988.

[46] D. Peng, B. Merriman, S. Osher, H. Zhao, M. Kang, “A PDE-based fast local level set method,”
Journal of Computational Physics 155, pp. 410-438, 1999.

[47] F. P. Preparata and M. 1. Shamos, Computational Geometry, Texts and Monographs in Com-
puter Science, Springer-Verlag, New York, 1990.

[48] E. Rouy and A. Tourin, “A viscosity solutions approach to shape-from-shading,” SIAM. J.
Numer. Analy. 29:3, pp. 867-884, 1992.

[49] T. Sakai, Riemannian Geometry, AMS Translations of Mathematical Monographs 149.

32

[50] J. Sethian, “Fast marching level set methods for three-dimensional photolithography devel-
opment,” Proc. SPIE International Symposium on Microlithography, Santa Clara, California,
March, 1996.

[61] J. A. Sethian, “A fast marching level-set method for monotonically advancing fronts,” Proc.
Nat. Acad. Sci. 93:4, pp. 1591-1595, 1996.

[52] J. A. Sethian, Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer
Vision and Materials Sciences, Cambridge University Press, Cambridge-UK, 1996.

[63] L. Simon, Theorems on Regularity and Singularity of Energy Minimizing Maps, Birkhiuser,
Boston, 1996.

[64] G. Taubin, “Estimation of planar curves, surfaces, and nonplanar space curves defined by
implicit equations with applications to edge and range image segmentation,” IEEE Trans.
PAMI 13:11, pp. 1115-1138, 1991.

[55] A. W. Toga, Brain Warping, Academic Press, New York, 1998.

[56] P. Thompson, R. Woods, M. Mega, and A. Toga, “Mathematical/computational challenges in
creating deformable and probabilistic atlases of the human brain,” Human Brain Mapping 9:2,
pp. 81-92, 2000.

[57] J. N. Tsitsiklis, “Efficient algorithms for globally optimal trajectories,” IEEE Transactions on
Automatic Control 40 pp. 1528-1538, 1995.

[58] D. C. Van Essen, H. Drury, S. Joshi and M. I. Miller, “Functional and structural mapping of
human cerebral cortex: Solutions are in the surfaces,” Proceedings of the National Academy of
Science 95, pp. 788-795, February 1998.

[59] B. Wandell, S. Chial, and B. Backus, “Cortical visualization,” Journal of Cognitive Neuro-
science, to appear.

[60] A.Witkin and P. Heckbert, “Using particles to sample and control implicit surfaces,” Computer
Graphics (SIGGRAPH), pp. 269-278, 1994.

[61] F.E. Wolter, “Cut loci in bordered and unbordered Riemannian manifolds,” Doctoral Disser-
tation, Technische Universitat Berlin, 1985.

[62] Z. Wood, M. Desburn, P. Schréder, and D. Breen, “Semi-Regular mesh extraction from vol-
ume,” Proc. IEEE Visualization, 2000.

[63] G. Yngve and G. Turk, “Creating smooth implicit surfaces from polygonal meshes,” Technical
Report GIT-GVU-99-42, Graphics, Visualization, and Usability Center. Georgia Institute of
Technology, 1999 (obtained from www.cc.gatech.edu/gvu/geometry/publications.html).

[64] A. Yezzi, S. Kichenassamy, P. Olver, and A. Tannenbaum, “Geometric active contours for
segmentation of medical imagery,” IEEE Trans. Medical Imaging 16, pp. 199-210, 1997.

[65] H. Zhao, S. Osher, B. Merriman, and M. Kang, “Implicit, non-parametric shape reconstruc-
tion from unorganized points using a variational level set method,” Comp. Vision and Image
Understanding 80, pp. 295-314, 2000.

33

[66] G. Zigelman, R. Kimmel, and N. Kiryati, “Texture mapping using surface flattening via multi-
dimensional scaling,” Technion-CIS Technical Report 2000-01, 2000.

34

Figure 10: These four figures show the detection of valleys over implicit surfaces representing a portion of
the human cortex. We use a mean curvature based weighted distance. In the left-upper corner we show
the mean curvature of the brain surface (clipped to improve visualization). It is quite convincing that this
quantity can be of of great help to detect valleys. In the remaining figures we show two curves over the
surface, whose coloring correspond to the mean curvature (not clipped, from red, yellow, green to blue,
as the value increases). The red curve is the one that corresponds to the natural geodesic (¢ = 1), while
the white curve is the weighted-geodesic that should travel through “nether” regions. Indeed, a very clear
difference exists between both trajectories, since the white curve makes its way through regions where the
mean curvature attains low values. The figure in the right-low quadrant is a zoomed view of the same
situation.

35

Figure 11: Distance map and geodesic curve between two points on an implicit bunny surface with an
intrinsic obstacle on it. We now use a binary weight, g = {1, 00}, being infinity at the obstacle. This permits,
as illustrated in the figure, the computation of optimal paths with obstacles on implicit surfaces. The blue
path corresponds to the obstacle-weighted distance function, and the white one to the natural (g = 1)
distance function. Both geodesics are shown over the surface of the bunny, the pseudocolor representing the
weighted distance for the surface with obstacle. The obstacle is also shown in blue.

36

