Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/5454
Cómo citar
Título: | Model selection techniques & Sparse Markov Chains |
Autor: | Fraiman, Nicolás |
Tutor: | Perera, Gonzalo |
Tipo: | Tesis de maestría |
Palabras clave: | MODELOS DE ÁRBOLES DISPERSOS, CONSISTENCIA, ÁRBOL DE CONTEXTOS, MÍNIMO LARGO DE DESCRIPCIÓN, CADENAS DE ALCANCE VARIABLE |
Fecha de publicación: | 2008 |
Resumen: | Este trabajo trata sobre problemas de selección de modelo. El capítulo 0
plantea un estudio general de estos problemas estadísticos. Dados un proceso estocástico y una familia de clases de modelos, con cada clase determinada por un parámetro de estructura y cada modelo dentro de una clase descrito por un vector de parámetros en un espacio cuya dimensión depende de la estructura.
Supongamos que dada una realización del proceso podemos estimar el vector de parámetros si la estructura es conocida. La tarea es estimar esta última.
Trabajamos usando el concepto de criterio de información, el parámetro de
estructura es estimado mediante minimizar un valor asignado a cada clase de modelos. Los criterios más utilizados son el Criterio de Información Bayesiano
(BIC) y el principio del mínimo largo de descripción (MDL). El BIC consiste
de dos términos: menos el logaritmo de la máxima verosimilitud, esto mide la
bondad de ajuste; y la mitad del número de parámetros libres por el logaritmo del tamaño muestral, esto penaliza modelos muy complejos.
En el capítulo 2, incluimos algunos resultados recientes en estimación de
cadenas de Markov de alcance variable (VLMC), los cuales nos ayudarán a entender más en profundidad el problema planteado. Basados en Csiszar y Talata (2006) extendemos el concepto de árbol de contextos para procesos ergódicos arbitrarios y demostramos que los principios BIC y MDL dan estimadores fuertemente consistentes del árbol de contextos.
En el capítulo 3 presentamos una nueva e ingeniosa representación de los
modelos Markovianos: los modelos de árbol de contexto disperso (stms), una
generalización de las cadenas de alcance variable, donde permitimos juntar
conjuntos más generales de estados con distribuciones similares, y preservamos la útil estructura combinatoria de los árboles de contextos. El tema principal del trabajo es estudiar un método para estimar la estructura en esta clase de modelos parsimoniosos. Mostraremos resultados de consistencia para estimadores basados en el principio MDL, el objetivo es encontrar el menor árbol que determina las probabilidades de transición.
Finalmente, en el capítulo 4 describimos brevemente algunas aplicaciones
en Biología y Teoría de la Información. Ilustramos cómo estas técnicas pueden
ser utilizadas para clasificar familias de proteínas. Además mostramos como se
pueden utilizar para comprimir imágenes bitonales, dando lugar a un método
de compresión sin pérdida que mejora la performance de los métodos basados
en árboles de contexto, y de varios algoritmos populares de compresión. |
Editorial: | UR. FC-CMAT |
Citación: | FRAIMAN, N. " Model selection techniques & Sparse Markov Chains". Tesis de maestría. Montevideo : UR. FC-CMAT, 2008. |
Título Obtenido: | Magíster en Matemática |
Facultad o Servicio que otorga el Título: | Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática. |
Licencia: | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0) |
Aparece en las colecciones: | Tesis de posgrado - Facultad de Ciencias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
FRAIMAN- N..pdf | 766,47 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons