english Icono del idioma   español Icono del idioma  

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12008/5206 How cite
Title: An unsupervised point alignment detection algorithm
Authors: Lezama, Jorge
Randall, Gregory
Morel, Jean-Michel
Grompone von Gioi, Rafael
Type: Artículo
Keywords: A contrario, Clustering
Descriptors: Point alignments, Gestalt theory
Issue Date: 2015
Abstract: In this article we present an algorithm for the detection of perceptually relevant alignments of points in 2D point patterns. Our algorithm is based on the a contrario detection theory. It requires no parameter tuning and has only one critical parameter, which controls the number of false detections.
Description: The ANSI C reviewed source code for this algorithm is available at the web page of this article. Compilation and usage instructions are included in the README.txt file of the archive. (http://demo.ipol.im/demo/126/archive/)
IN: IPOL. Journal Image Processing On Line, vol. .5, pp. 296-310.
ISSN: 2105-1232
Citation: LEZAMA, Jorge, RANDALL, Gregory, MOREL, Jean-Michel y otros. "An unsupervised point alignment detection algorithm". IPOL. Journal Image Processing On Line, 2015, vol. 5, pp. 296-310
Appears in Collections:Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Files in This Item:
File Description SizeFormat  
LRMG15.pdf1,37 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons