Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.12008/5206
How cite
Title: | An unsupervised point alignment detection algorithm |
Authors: | Lezama, Jorge Randall, Gregory Morel, Jean-Michel Grompone von Gioi, Rafael |
Type: | Artículo |
Keywords: | A contrario, Clustering |
Descriptors: | Point alignments, Gestalt theory |
Issue Date: | 2015 |
Abstract: | In this article we present an algorithm for the detection of perceptually relevant alignments of points in 2D point patterns. Our algorithm is based on the a contrario detection theory. It requires no parameter tuning and has only one critical parameter, which controls the number of false detections. |
Description: | The ANSI C reviewed source code for this algorithm is available at the web page of this article. Compilation and usage instructions are included in the README.txt file of the archive. (http://demo.ipol.im/demo/126/archive/) |
IN: | IPOL. Journal Image Processing On Line, vol. .5, pp. 296-310. |
ISSN: | 2105-1232 |
Citation: | LEZAMA, Jorge, RANDALL, Gregory, MOREL, Jean-Michel y otros. "An unsupervised point alignment detection algorithm". IPOL. Journal Image Processing On Line, 2015, vol. 5, pp. 296-310 |
Appears in Collections: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Files in This Item:
File | Description | Size | Format | ||
---|---|---|---|---|---|
LRMG15.pdf | 1,37 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License