Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/51579
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Cerviño, Juan | - |
dc.contributor.author | Bazerque, Juan Andrés | - |
dc.contributor.author | Calvo-Fullana, Miguel | - |
dc.contributor.author | Ribeiro, Alejandro | - |
dc.date.accessioned | 2025-09-11T18:00:18Z | - |
dc.date.available | 2025-09-11T18:00:18Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Cerviño, J., Bazerque, J., Calvo-Fullana, M. y otros. Multi-task bias-variance trade-off through functional constraints [Preprint]. Publicado en: ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 04-10 jun. 2023, pp. 1-5. | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/51579 | - |
dc.description.abstract | Multi-task learning aims to acquire a set of functions, either regressors or classifiers, that perform well for diverse tasks. At its core, the idea behind multi-task learning is to exploit the intrinsic similarity across data sources to aid in the learning process for each individual domain. In this paper we draw intuition from the two extreme learning scenarios – a single function for all tasks, and a task-specific function that ignores the other tasks dependencies – to propose a bias-variance trade-off. To control the relationship between the variance (given by the number of i.i.d. samples), and the bias (coming from data from other task), we introduce a constrained learning formulation that enforces domain specific solutions to be close to a central function. This problem is solved in the dual domain, for which we propose a stochastic primal-dual algorithm. Experimental results for a multi-domain classification problem with real data show that the proposed procedure outperforms both the task specific, as well as the single classifiers. | es |
dc.description.sponsorship | Con apoyo de NSF CCF 1717120, ARL DCIST CRA Beca W911NF-17-2-0181 y Theorinet Simons. | es |
dc.format.extent | 5 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Multi-task Learning | es |
dc.subject | Constrained Learning | es |
dc.title | Multi-task bias-variance trade-off through functional constraints | es |
dc.type | Preprint | es |
dc.contributor.filiacion | Cerviño Juan, University of Pennsylvania, Philadelphia, USA | - |
dc.contributor.filiacion | Bazerque Juan Andrés, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Calvo-Fullana Miguel, Massachusetts Institute of Technology, Boston, USA | - |
dc.contributor.filiacion | Ribeiro Alejandro, University of Pennsylvania, Philadelphia, USA | - |
dc.rights.licence | Licencia Creative Commons Atribución (CC - By 4.0) | es |
udelar.academic.department | Sistemas y Control | es |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
CBCR23.pdf | Preprint | 2,36 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons