english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/51273 Cómo citar
Título: Improving OCR using internal document redundancy
Autor: Belzarena, Diego
Mowlavi, Seginus
Artola, Aitor
Mariño, Camilo
Gardella Oddone, Marina Paola
Ramírez Paulino, Ignacio
Tadros, Antoine
He, Roy
Bottaioli, Natalia
Rajaei, Boshra
Randall, Gregory
Morel, Jean-Michel
Tipo: Preprint
Palabras clave: OCR, Digital humanities
Fecha de publicación: 2025
Resumen: Current OCR systems are based on deep learning models trained on large amounts of data. Although they have shown some ability to generalize to unseen data, especially in detection tasks, they can struggle with recognizing low-quality data. This is particularly evident for printed documents, where intra-domain data variability is typically low, but inter-domain data variability is high. In that context, current OCR methods do not fully exploit each document’s redundancy. We propose an unsupervised method by leveraging the redundancy of character shapes within a document to correct imperfect outputs of a given OCR system and suggest better clustering. To this aim, we introduce an extended Gaussian Mixture Model (GMM) by alternating an Expectation-Maximization (EM) algorithm with an intra-cluster realignment process and normality statistical testing. We demonstrate improvements in documents with various levels of degradation, including recovered Uruguayan military archives and 17th to mid-20th century European newspapers.
Citación: Belzarena, D., Mowlavi, S., Artola, A. y otros. Improving OCR using internal document redundancy [Preprint]. Publicado en: ICDAR 2025 - The 19th International Conference on Document Analysis and Recognition, Wuhan, Hubei, China, 16-21 sep. 2025, pp. 1-28. https://arxiv.org/abs/2508.14557.
Departamento académico: Procesamiento de Señales
Grupo de investigación: Tratamiento de Imagenes
Licencia: Licencia Creative Commons Atribución (CC - By 4.0)
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
BMAMGRTHBRRM25.pdfPreprint26,35 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons