english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/51155 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLedesma, Rubén-
dc.contributor.authorAlonso-Suárez, Rodrigo-
dc.contributor.authorSalazar, Germán-
dc.contributor.authorNollas, Fernando-
dc.contributor.authorCastro Vilela, Olga-
dc.date.accessioned2025-08-20T12:42:28Z-
dc.date.available2025-08-20T12:42:28Z-
dc.date.issued2025-
dc.identifier.citationLedesma, R., Alonso-Suárez, R., Salazar, G. y otros. "Evaluation of satellite and reanalysis models for solar irradiance estimation in Northwest Argentina". IEEE Latin America Transactions 23(8):706-717. [en línea] 2025. DOI : 10.1109/TLA.2025.11072498.es
dc.identifier.urihttps://latamt.ieeer9.org/index.php/transactions/article/view/9498-
dc.identifier.urihttps://hdl.handle.net/20.500.12008/51155-
dc.description.abstractAccurate solar resource assessment is critical for the development of solar energy projects, especially in regions with complex climatic and geographic conditions. This study evaluates the performance of various satellite-based and reanalysis models in estimating global horizontal irradiance (GHI) in Northwestern Argentina, focusing on two locations characterized by different environmental conditions: La Quiaca and Salta. Five satellitebased models (CAMS Heliosat-4, NREL NSRDB, GOES DSR, LSA-SAF MDSSFTD, and GOES G-CIM) and two reanalysis datasets (MERRA-2 and ERA-5) were analysed and compared with high-quality ground-based measurements recorded between 2020 and 2023. The results show that the G-CIM and NSRDB models provide the most accurate irradiance estimates, effectively minimising errors even in challenging environments with extreme altitude or variable terrain reflectivity. At the 10-minute time scale in Salta, the G-CIM model yields a root mean squared deviation (RMSD) of 23.4% and a mean bias of 4.8%, whereas the NSRDB model records an RMSD of 26.6% and a mean bias of –4.2%. In La Quiaca, both models achieve RMSD values below 20% and mean biases under 1%. At the 60-minute scale, in Salta, G-CIM and NSRDB exhibit RMSDs of 20.7% and 19.7%, with corresponding mean biases of 5.4% and –3.6%, respectively, while in La Quiaca they maintain mean biases below 1% and RMSDs of 13.2% for G-CIM and 12.6% for NSRDB. Conversely, the MERRA-2 and ERA-5 reanalysis models showed higher uncertainties, particularly in areas with significant microclimatic variations. The study highlights the importance of using locally validated satellite data for accurate solar resource assessment and emphasises the need for site-specific adjustments when applying global irradiance models. These findings contribute to improved planning and decision-making for solar energy projects in Northwest Argentina and provide valuable insights for researchers, policy makers and industry professionals.es
dc.format.extent12 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.relation.ispartofIEEE Latin America Transactions 23(8):706-717, 2025.es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectGlobal Horizontal Solar Irradiancees
dc.subjectSatellite Modelses
dc.subjectReanalysis Dataes
dc.subjectSolar Resource Assessmentes
dc.subjectNorthwest Argentinaes
dc.titleEvaluation of satellite and reanalysis models for solar irradiance estimation in Northwest Argentina.es
dc.typeArtículoes
dc.contributor.filiacionLedesma Rubén, INENCO - UNSa-
dc.contributor.filiacionAlonso-Suárez Rodrigo, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionSalazar Germán, INENCO - CONICET, Department of Physics, Faculty of Exact Sciences, National University of Salta, Argentina-
dc.contributor.filiacionNollas Fernando, National Meteorological Service Argentino-
dc.contributor.filiacionCastro Vilela Olga, Universidade Federal de Pernambuco, Recife, Brazil-
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
dc.identifier.doi10.1109/TLA.2025.11072498-
Aparece en las colecciones: Publicaciones académicas y científicas - Laboratorio de Energía Solar (LES)

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
LASNV25.pdfVersión aceptada3,31 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons