english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/50929 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorVanerio, Juan Martín-
dc.contributor.authorHügerich, Lily-
dc.contributor.authorSchmid, Stefan-
dc.date.accessioned2025-08-05T17:49:49Z-
dc.date.available2025-08-05T17:49:49Z-
dc.date.issued2024-
dc.identifier.citationVanerio, J., Hügerich, L. y Schmid, S. Tero : Offloading CDN traffic to massively distributed devices [en línea]. EN: ICDCN ´24 : Proceedings of the 25th International Conference on Distributed Computing and Networking, Chennai, India, 4-7 jan. 2024, pp. 186-198. DOI: 10.1145/3631461.3631556.es
dc.identifier.urihttps://dl.acm.org/doi/10.1145/3631461.3631556-
dc.identifier.urihttps://hdl.handle.net/20.500.12008/50929-
dc.description.abstractTo provide high performance and cope with ever-increasing traffic demand, Content Delivery Network (CDN) providers have started considering the use of multi-tier architectures, including simple caching devices that can augment their server infrastructure, resulting in a massively distributed caching network. These caching devices are usually geographically distributed, although with limited storage space and bandwidth (e.g., set-top boxes), potentially alleviating the servers’ load.This paper initiates the joint resource allocation and routing problem underlying such networks while providing at least a minimum bandwidth for each request. We present Tero, a system that maximizes throughput in such scenarios and leverages popularity forecasting to adapt to demand changes quickly.In Tero, the CDN’s edge server decides whether to serve each request locally or redirect it to a specific caching device, maximizing overall system throughput by offloading traffic to the device caches. To adjust to the highly dynamic nature of the demand patterns, Tero performs frequent near-future content popularity predictions and makes allocation decisions every few minutes. We model the optimization problem under these constraints and derive optimality properties using a Lagrangian formulation from which we design heuristic algorithms.We evaluate Tero on a synthetic and a real-world large CDN request sequences, on ablation studies, and by comparing with an upper performance bound. Tero can reduce the edge server’s throughput and provide sufficient bandwidth to each request, outperforming the competing baselines by up to 44% while being close to the performance of the ideal upper bounds. Also, Tero takes allocation decisions orders of magnitude faster than solving the exact problem.es
dc.description.sponsorshipInvestigación financiada por la Fundación Alemana de Investigación (DFG), Beca 470029389 (FlexNets), 2021-2024.es
dc.description.urihttps://dl.acm.org/doi/10.1145/3631461.3631556es
dc.format.extent13 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.publisherACMes
dc.relation.ispartofICDCN ´24 : Proceedings of the 25th International Conference on Distributed Computing and Networking, Chennai, India, 4-7 jan. 2024, pp. 186-198.es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectMulti-Tier CDNes
dc.subjectAllocationes
dc.subjectPopularity Predictiones
dc.subjectRoutinges
dc.titleTero : Offloading CDN traffic to massively distributed devices.es
dc.typePonenciaes
dc.contributor.filiacionVanerio Juan Martín, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionHügerich Lily, TU Berlin, Berlin, Germany-
dc.contributor.filiacionSchmid Stefan, TU Berlin, Berlin, Germany-
dc.rights.licenceLicencia Creative Commons Atribución (CC - By 4.0)es
dc.identifier.doi10.1145/3631461.3631556-
udelar.academic.departmentTelecomunicacioneses
udelar.investigation.groupAnálisis de Redes, Tráficos y Estadísticas de Servicios (ARTES)es
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
VHS24.pdfVersión publicada976,56 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons