english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/50119 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMontesinos-López, Osval A.-
dc.contributor.authorBarajas-Ramirez, Eduardo A.-
dc.contributor.authorMontesinos-López, Abelardo-
dc.contributor.authorLecumberry, Federico-
dc.contributor.authorFariello, Maria Ines-
dc.contributor.authorMontesinos-López, José Cricelio-
dc.contributor.authorRamirez Alcaraz, Juan Manuel-
dc.contributor.authorCrossa, José-
dc.contributor.authorHoward, Reka-
dc.date.accessioned2025-05-26T15:35:48Z-
dc.date.available2025-05-26T15:35:48Z-
dc.date.issued2025-
dc.identifier.citationMontesinos-López, O., Barajas-Ramirez, E., Montesinos-López, A. y otros. "Tuning matters : Comparing lambda optimization approaches for ridge regression in genomic prediction". Genes. [en línea]. 2025, vol. 16, no. 6, pp. 1-22. DOI: 10.3390/genes16060618.es
dc.identifier.issn2073-4425-
dc.identifier.urihttps://www.mdpi.com/2073-4425/16/6/618-
dc.identifier.urihttps://hdl.handle.net/20.500.12008/50119-
dc.description.abstractBackground/Objectives : Ridge regression (RR) is a widely used statistical learning method for predicting continuous response variables, particularly in high-dimensional contexts where the number of predictors (p) far exceeds the number of observations (n). RR is known for its simplicity, as it depends on a single regularization hyperparameter (λ), and for its strong predictive performance, especially in genomic prediction applications. However, selecting the optimal value of λ remains a key challenge, with standard techniques such as cross-validation often being computationally intensive and potentially suboptimal in terms of predictive accuracy. Methods: To address this issue, recent studies have proposed alternative methods for tuning λ, aiming to enhance both predictive power and computational efficiency. In this study, we perform a comprehensive benchmarking analysis of two novel λ-selection strategies and compare them with traditional approaches. The evaluation was conducted across 14 real-world genomic selection datasets, covering diverse scenarios representative of practical breeding programs. Results : Our results demonstrate that the method proposed consistently outperforms conventional approaches in both prediction accuracy and computational speed. Additionally, we found that combining this method with another recent approach yields a hybrid strategy that, in some cases, delivers the best overall performance. These findings underscore the importance of carefully selecting the regularization parameter in ridge regression models and suggest that modern, data-driven tuning approaches can substantially improve model performance. Conclusions : This study contributes valuable insights into optimizing hyperparameter selection for high-dimensional prediction problems, with direct implications for genomic selection and other applications in the life sciences.es
dc.description.sponsorshipDepartment of Statistics at the University of Nebraska–Lincoln, USA.es
dc.format.extent22 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.publisherMDPIes
dc.relation.ispartofGenes, vol. 16, no. 6, jun. 2025, pp. 1-22.es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectRidge regressiones
dc.subjectPrediction performancees
dc.subjectTuning hyperparameteres
dc.subjectContinues responsees
dc.titleTuning matters : Comparing lambda optimization approaches for ridge regression in genomic prediction.es
dc.typeArtículoes
dc.contributor.filiacionMontesinos-López Osval A., Facultad de Telemática, Universidad de Colima, Colima 28040, Mexico-
dc.contributor.filiacionBarajas-Ramirez Eduardo A., Facultad de Telemática, Universidad de Colima, Colima 28040, Mexico-
dc.contributor.filiacionMontesinos-López Abelardo, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Guadalajara 44430, Mexico-
dc.contributor.filiacionLecumberry Federico, Universidad de la República (Uruguay). Facultad de Ingeniería-
dc.contributor.filiacionFariello Maria Ines, Universidad de la República (Uruguay). Facultad de Ingeniería-
dc.contributor.filiacionMontesinos-López José Cricelio, Department of Public Health Sciences, University of California Davis, Davis, CA 95616, USA-
dc.contributor.filiacionRamirez Alcaraz Juan Manuel, Facultad de Telemática, Universidad de Colima, Colima 28040, Mexico-
dc.contributor.filiacionCrossa José, International Maize and Wheat Improvement Center (CIMMYT), Carretera Mexico-Veracruz, Km 45, Texcoco 52640, Mexico-
dc.contributor.filiacionHoward Reka, Department of Statistics, 343C Hardin Hall Lincoln, University of Nebraska-Lincoln, Lincoln, NE 68583, USA-
dc.rights.licenceLicencia Creative Commons Atribución (CC - By 4.0)es
dc.identifier.doi10.3390/genes16060618-
udelar.academic.departmentProcesamiento de Señaleses
udelar.investigation.groupTratamiento de Imágeneses
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
MBMLFMRCH25.pdfVersión publicada1,6 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons