english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/49470 Cómo citar
Título: Deep image generative modeling and statistical testing for industrial anomaly detection
Autor: Tailanián, Matías
Tutor: Musé, Pablo
Pardo, Alvaro
Tipo: Tesis de doctorado
Palabras clave: Anomaly, Anomaly detection, Industrial anomaly detection, Image generative modeling, Diffusion models, Likelihood estimation, A contrario, NFA, Number of false alarms, Image processing, AI, Artificial intelligence, Machine learning, Anomalías, Detección de anomalías, Detección de anomalías industriales, Modelado de imágenes generativo, Modelos de difusión, Estimación de verosimilitud, NFA, Número de falsas alarmas, Procesamiento de imágenes, IA, Inteligencia artificial, Aprendizaje automático
Fecha de publicación: 2024
Resumen: This thesis addresses the challenge of anomaly detection in images, for industrial applications. It explores advanced methodologies employing both classical image processing techniques and modern generative modeling approaches, specifically focusing on Normalizing Flows and Diffusion Models. As anomalies are rare by definition, collecting normal samples is generally easier and more feasible in industrial settings than acquiring comprehensive datasets with labeled anomalies. Therefore, the focus of this research is on unsupervised methods, and one-class methods, where the idea is to model the “normality” and detect anomalies as everything that deviates from this model. Initially, a multi-scale anomaly detection method based on classical image processing techniques is proposed, leveraging an a contrario approach to control the number of false alarms. Subsequently, a novel method called U-Flow is introduced, which employs a U-shaped architecture in Normalizing Flows to achieve anomaly detection with automatic thresholding. Then, this thesis further explores the use of Diffusion Models for anomaly detection, presenting the Diffusion Anomaly Detection (DAD) method. This work incorporates scorebased generative models and inpainting techniques to refine anomaly detection capabilities. Additionally, a new diffusion-based method called RIFA (Random Inpainting For Anomaly detection) is proposed as a completely unsupervised alternative. Finally, the techniques and knowledge gained from Diffusion Models are applied to a completely different application: counter-forensics. Throughout the whole thesis, a special emphasis is placed on bridging the gap between theoretical research and practical industrial applications, setting the theoretical foundations for obtaining automatic segmentations of anomalies, by performing statistical tests and controlling the number of false alarms using the a contrario framework. Experimental results on standard datasets validate the effectiveness of the proposed methods, highlighting substantial performance gains in some cases. The final chapter applies the best-performing method to two industrial problems : quality control in manufacturing leather samples for the upholstery industry, and defect detection in fruits, demonstrating its practical viability and impact on improving quality control processes in these industries In addition, this research contributes to the open-source community with several code repositories and has resulted in four published papers so far, and hopefully, more will follow. Future work will particularly focus on improving likelihood estimation with Diffusion Models and expanding its applicability to other industrial domains.
Editorial: Udelar.FI
Financiadores: Subvención de financiación parcial de la Agencia Nacional de Investigación e Innovación de Uruguay.
Citación: Tailanián, M. Deep image generative modeling and statistical testing for industrial anomaly detection [en línea]. Tesis de doctorado. Montevideo : Udelar. FI. IIE, 2024.
ISSN: 1688-2784
Título Obtenido: Doctor en Ingeniería Eléctrica
Facultad o Servicio que otorga el Título: Universidad de la República (Uruguay). Facultad de Ingeniería
Licencia: Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
Aparece en las colecciones: Tesis de posgrado - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
Tai24.pdfTesis de doctorado84,59 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons