english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/48874 Cómo citar
Título: Infinite-dimensional hierarchy of recursive extensions for all subn-leading soft effects in Yang-Mills
Autor: Nagy, Silvia
Peraza, Javier
Pizzolo, Giorgio
Tipo: Artículo
Descriptores: GAUGE SYMMETRY, SCATTERING AMPLITUDES
Fecha de publicación: 2024
Resumen: Building on our proposal in [1] , we present in detail the construction of the extended phase space for Yang-Mills at null infinity, containing the asymptotic symmetries and the charges responsible for subn-leading soft theorems at all orders. The generality of the procedure allows it to be directly applied to the computation of both tree and loop-level soft limits. We also give a detailed study of Yang-Mills equations under the radial expansion, giving a thorough construction of the radiative phase space for decays compatible with tree-level amplitudes for both light-cone and radial gauges. This gives rise to useful recursion relations at all orders between the field strength and the vector gauge coefficients. We construct the subn-leading charges recursively, and show a hierarchical truncation such that each charge subalgebra is closed, and their action in the extended phase space is canonical. We relate these results with the infinite-dimensional algebras that have been recently introduced in the context of conformal field theories at null infinity. We also apply our method to the computation of non-universal terms in the sub-leading charges arising in theories with higher derivative interaction terms.
Editorial: SISSA
EN: Journal of High Energy Physics, 2024, 68: 1-60. DOI: 10.1007/JHEP12(2024)068
Financiadores: ANII: FCE_1_2023_1_175902
Citación: Nagy, S, Peraza, J y Pizzolo, G. "Infinite-dimensional hierarchy of recursive extensions for all subn-leading soft effects in Yang-Mills". Journal of High Energy Physics. [en línea] 2024: 68: 1-60. DOI: 10.1007/JHEP12(2024)068. 60 h.
Aparece en las colecciones: Publicaciones académicas y científicas - Facultad de Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
JHEP12(2024)068.pdf939,26 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons