english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/48652 Cómo citar
Título: A CRPS loss for deep probabilistic regression.
Autor: Marchesoni-Acland, Franco
Alonso-Suárez, Rodrigo
Herrera, Andrés
Kherroubi, Josselin
Morel, Jean M.
Facciolo, Gabriele
Tipo: Preprint
Palabras clave: CRPS, Probabilistic Regression, Deep Learning, Solar Forecasting
Fecha de publicación: 2024
Resumen: Probabilistic regression is relevant in highstakes areas such as energy forecasting, financial risk assessment, or healthcare. Deep models that directly output a probability distribution usually use ensembles or frame regression as classification into bins. In contrast, we propose to optimize directly for the Continuous Ranked Probability Score (CRPS), a proper scoring rule for probabilistic predictions. For the flexible histogram-like distributions, the CRPS is differentiable and can be used as the loss function of any deep model. We derive and implement the CRPS loss and showcase its performance against cross-entropy in a solar forecasting application. This new loss enables anyone to easily make any deep regressor probabilistic by simply using the new loss with the same computational cost. Surprisingly, using the CRPS loss provides superior results even when training a deterministic regressor. Code and data available at github.com/franchesoni/differentiable-crps.
Citación: Marchesoni-Acland, F., Alonso-Suárez, R., Herrera, A. y otros. A CRPS loss for deep probabilistic regression. [Preprint] Publicado en: Proceedings del IEEE URUCON, 18-20 Nov. 2024. 4 p. DOI: 10.1109/URUCON63440.2024.10850406.
Aparece en las colecciones: Publicaciones académicas y científicas - Laboratorio de Energía Solar (LES)

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
MAHKMF24.pdfPreprint2,62 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons