english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/48538 Cómo citar
Título: Residual paramodularity of a certain Calabi-Yau threefold
Autor: Dummigan, Neil
Tornaría, Gonzalo
Tipo: Preprint
Descriptores: MATHEMATICS - NUMBER THEORY, HILBERT MODULAR FORM, PARAMODULAR FORM, CALABI-YAU THREEFOLD
Fecha de publicación: 2024
Resumen: We prove congruences of Hecke eigenvalues between cuspidal Hilbert newforms f79 and h79 over F=Q(5–√), of weights (2,2) and (2,4) respectively, level of norm 79. In the main example, the modulus is a divisor of 5 in some coefficient field, in the secondary example a divisor of 2. The former allows us to prove that the 4-dimensional mod-5 representation of Gal(Q¯¯¯¯/Q) on the 3rd cohomology of a certain Calabi-Yau threefold comes from a Siegel modular form F79 of genus 2, weight 3 and paramodular level 79. This is a weak form of a conjecture of Golyshev and van Straten. In aid of this, we prove also a congruence of Hecke eigenvalues between F79 and the Johnson-Leung-Roberts lift JR(h79), which has weight 3 and paramodular level 79×52.
Editorial: arXiv
EN: Mathematics (Number Theory), arXiv:2412.14289, dic. 2024, pp. 1-16
Citación: Dummigan, N y Tornaría, G. "Residual paramodularity of a certain Calabi-Yau threefold" [Preprint]. Publicado en: Mathematics (Number Theory). 2024, arXiv:2412.14289, dic. 2024, pp. 1-16. DOI: 10.48550/arXiv.2412.14289
Aparece en las colecciones: Publicaciones académicas y científicas - Facultad de Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
2412.14289v1.pdf281,57 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons