Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/48520
Cómo citar
Título: | Relative L^p-cohomology and application to Heintze groups |
Autor: | Sequeira Manzino, Emiliano |
Tipo: | Artículo |
Descriptores: | HEINTZE GROUPS, QUASI-ISOMETRY INVARIANT, L^P-COHOMOLGY, DELTA-HYPERBOLICITY |
Fecha de publicación: | 2024 |
Resumen: | We introduce the notion ofrelativeLp-cohomologyas a quasi-isometry invariantdefined for a Gromov-hyperbolic space and a point on its boundary at infinity and reproduce somebasic properties ofLp-cohomology in this context. In the case of degree1we show a relation betweenthe relative and the classicalLp-cohomology. As an application, we explicitly construct non-zerorelativeLp-cohomology classes for a purely real Heintze group of the formRn−1⋊αR, which gives away to prove that the eigenvalues ofα, up to a scalar multiple, are invariant under quasi-isometries. |
Editorial: | Finnish Mathematical Society |
EN: | Annales Fennici Mathematic, 2024, 49: 23–47. |
Citación: | Sequeira Manzino, E. "Relative L^p-cohomology and application to Heintze groups". Annales Fennici Mathematic. [en línea] 2024, 49: 23–47. DOI: 10.54330/afm.142924. 25 h. |
Aparece en las colecciones: | Publicaciones académicas y científicas - Facultad de Ciencias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
142924-20240131-1.pdf | 363,87 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons