english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/48435 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorCholaquidis, Alejandro-
dc.contributor.authorCuevas, Antonio-
dc.contributor.authorMoreno, Leonardo-
dc.date.accessioned2025-02-17T13:55:08Z-
dc.date.available2025-02-17T13:55:08Z-
dc.date.issued2024-
dc.identifier.citationCholaquidis, A., Cuevas, A., Moreno, L. "On the notion of polynomial reach: statistical application". Electronic Journal of Statistics. [en línea] 2024; 18: 3437-3460. DOI: 10.1214/24-EJS2278. 24 h.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/48435-
dc.description.abstractThe volume function V (t) of a compact set S ∈ Rd is just the Lebesgue measure of the set of points within a distance to S not larger thant. According to some classical results in geometric measure theory, the volume function turns out to be a polynomial, at least in a finite interval,under a quite intuitive, easy to interpret, sufficient condition (called “positive reach”) which can be seen as an extension of the notion of convexity. However, many other simple sets, not fulfilling the positive reach condition, have also a polynomial volume function. To our knowledge, there is no general, simple geometric description of such sets. Still, the polynomial character of V (t) has some relevant consequences since the polynomial coefficients carry some useful geometric information. In particular, the constant term is the volume of S and the first order coefficient is the boundary measure (in Minkowski’s sense). This paper is focused on sets whose volume function is polynomial on some interval starting at zero, whose length (that we call “polynomial reach”) might be unknown. Our main goal is to approximate such polynomial reach by statistical means, using only a large enough random sample of points inside S. The practical motivation is simple: when the value of the polynomial reach, or rather a lower bound for it, is approximately known, the polynomial coefficients can be estimated from the sample points by using standard methods in polynomial approximation. As a result, we get a quite general method to estimate the volume and boundary measure of the set, relying only on an inner sample of points. This paper explores the theoretical and practical aspects of this idea.es
dc.description.sponsorshipANII: FCE-3-2022-1-172289es
dc.format.extent24 h.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.publisherIMSes
dc.relation.ispartofElectronic Journal of Statistics, 2024, 18: 3437-3460. DOI: 10.1214/24-EJS2278es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subject.otherCONDITION NUMBERes
dc.subject.otherMINKOWSKI CONTENTes
dc.subject.otherPOLYNOMIAL VOLUMEes
dc.titleOn the notion of polynomial reach: statistical applicationes
dc.typeArtículoes
dc.contributor.filiacionCholaquidis Alejandro, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.-
dc.contributor.filiacionCuevas Antonio-
dc.contributor.filiacionMoreno Leonardo, Universidad de la República (Uruguay). Facultad de Ciencias Económicas y de Administración.-
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
dc.identifier.doi10.1214/24-EJS2278-
Aparece en las colecciones: Publicaciones académicas y científicas - Facultad de Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
24-EJS2278.pdf436,28 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons