english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/47053 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorIrigaray, Ignacio-
dc.contributor.authorSallés, Federico-
dc.contributor.authorRuiz, Viviana-
dc.contributor.authorRocamora, Martín-
dc.date.accessioned2024-11-14T16:47:56Z-
dc.date.available2024-11-14T16:47:56Z-
dc.date.issued2023-
dc.identifier.citationIrigaray, I., Sallés, F., Ruiz, V. y otros. Bridging the gap between cutting edge research in audio restoration and sound archive practices [en línea]. EN: 54th IASA Conference & 4th ICTMD Forum, Collaborating to preserve and safeguard audiovisual and related heritage, Istanbul, Turkey, 11-15 sep. 2023.es
dc.identifier.urihttps://iasa2023annualconference.sched.com/event/1NtCf/paper-bridging-the-gap-between-cutting-edge-research-in-audio-restoration-and-sound-archive-practices-
dc.identifier.urihttps://hdl.handle.net/20.500.12008/47053-
dc.description.abstractSince the end of the 19th century, sound recordings have increased the possibilities and scope of musicology and music documentation. In Uruguay, the figure of Lauro Ayestarán stands out, who between 1943 and 1966 made more than 3000 field recordings throughout the national territory. These recordings are kept at the Centro Nacional de Documentación Musical (CDM) and suffer from a high level of noise that can make it difficult to appreciate, thus narrowing the access. Traditional methods for digital audio restoration are based on Digital Signal Processing techniques, such as Wiener filtering and autoregressive modelling. However, the significant progress brought by deep learning to computer vision and natural language processing has also extended to the audio domain, improving the state-of-the-art in problems like speech recognition and sound source separation. Consequently, some recent works have addressed audio restoration tasks using a deep learning approach, including bandwidth extension, and denoising. This work addresses the problem of noise reduction in analog tape recordings using a deep-learning approach. First, we build a data set of audio snippets of tape noise extracted from different functional tape equipment. Then, we train a deep-learning architecture. The data set of tape noise snippets and the trained deep-learning models are publicly available. In this way, we encourage the collective improvement of the data set and the broad application of the denoising approach by the audiovisual archives community. This interdisciplinary work is carried out by archive researchers from the CDM and signal processing researchers from the Universidad de la República (Uruguay).es
dc.format.mimetypevideo/mpeges
dc.language.isoenes
dc.language.isoeses
dc.relation.ispartof54th IASA Conference & 4th ICTMD Forum, Collaborating to preserve and safeguard audiovisual and related heritage, Istanbul, Turkey, 11-15 sep. 2023.es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subject.otherPROCESAMIENTO DE LA SEÑAL DIGITALes
dc.subject.otherGRABACIONES SONORASes
dc.titleBridging the gap between cutting edge research in audio restoration and sound archive practices.es
dc.typePonenciaes
dc.contributor.filiacionIrigaray Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionSallés Federico, Centro Nacional de Documentación Musical Lauro Ayestarán.-
dc.contributor.filiacionRuiz Viviana, Centro Nacional de Documentación Musical Lauro Ayestarán.-
dc.contributor.filiacionRocamora Martín, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
udelar.academic.departmentProcesamiento de Señaleses
udelar.investigation.groupProcesamiento de Audio (GPA)es
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
ISRR23.mpgVersión publicada312,16 MBMPEGVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons