english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/47035 Cómo citar
Título: Optimal volume anomaly detection in network traffic flows
Autor: Fillatre, Lionel
Nikiforov, Igor
Casas, Pedro
Vaton, Sandrine
Tipo: Ponencia
Fecha de publicación: 2008
Resumen: Optimal detection of unusual and significant changes in network Origin-Destination (OD) traffic volumes from simple link load measurements is considered in the paper. The ambient traffic, i.e. the OD traffic matrix corresponding to the non-anomalous network state, is unknown and it is considered here as a nuisance parameter because it can mask the anomalies. Since the OD traffic matrix is not recoverable from simple link load measurements, the anomaly detection is an ill-posed decision-making problem. The method proposed in this paper consists of finding a linear parsimonious model of ambient traffic (nuisance parameter) and detecting anomalies by using an invariant detection algorithm based on a separation of the measurement space into disjoint subspaces corresponding to normal and anomalous network traffic. The method's ability to detect anomalies is evaluated in real traffic from Abilene, a United States backbone network. The theoretically expected results are confirmed.
Citación: Fillatre, L, Nikiforov, I, Casas, P, Vaton, S. "Optimal volume anomaly detection in network traffic flows" 2016th European Signal Processing Conference, Lausanne, Switzerland, 2008,
Departamento académico: Telecomunicaciones
Grupo de investigación: Análisis de Redes, Tráfico y Estadísticas de Servicios
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
FNCV08.pdf508,96 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons