Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/47035
Cómo citar
| Título: | Optimal volume anomaly detection in network traffic flows |
| Autor: | Fillatre, Lionel Nikiforov, Igor Casas, Pedro Vaton, Sandrine |
| Tipo: | Ponencia |
| Fecha de publicación: | 2008 |
| Resumen: | Optimal detection of unusual and significant changes in network Origin-Destination (OD) traffic volumes from simple link load measurements is considered in the paper. The ambient traffic, i.e. the OD traffic matrix corresponding to the non-anomalous network state, is unknown and it is considered here as a nuisance parameter because it can mask the anomalies. Since the OD traffic matrix is not recoverable from simple link load measurements, the anomaly detection is an ill-posed decision-making problem. The method proposed in this paper consists of finding a linear parsimonious model of ambient traffic (nuisance parameter) and detecting anomalies by using an invariant detection algorithm based on a separation of the measurement space into disjoint subspaces corresponding to normal and anomalous network traffic. The method's ability to detect anomalies is evaluated in real traffic from Abilene, a United States backbone network. The theoretically expected results are confirmed. |
| Citación: | Fillatre, L, Nikiforov, I, Casas, P, Vaton, S. "Optimal volume anomaly detection in network traffic flows" 2016th European Signal Processing Conference, Lausanne, Switzerland, 2008, |
| Departamento académico: | Telecomunicaciones |
| Grupo de investigación: | Análisis de Redes, Tráfico y Estadísticas de Servicios |
| Licencia: | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
| Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
| Fichero | Descripción | Tamaño | Formato | ||
|---|---|---|---|---|---|
| FNCV08.pdf | 508,96 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons