Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/47029
Cómo citar
Título: | A novel framework from Nontechinical Losses Detection in Electricity Companies |
Autor: | Di Martino, Matías Decia, Federico Molinelli, Juan Fernández, Alicia |
Tipo: | Ponencia |
Palabras clave: | Electricity theft, Support vector machine, Optimum path forest, Unbalance class problem, Combining classifier, UTE |
Fecha de publicación: | 2013 |
Resumen: | Nontechnical losses represent a very high cost to power supply companies, who aims to improve fraud detection in order to reduce this losses. The great number of clients and the diversity of different types of fraud makes this a very complex task. In this paper we present a combined strategy based on measures and methods adequate to deal with class imbalance problems. We also describe the features proposed, the selection process and results. Analysis over consumers historical kWh load profile data from Uruguayan Electricity Utility (UTE) shows that using combination and balancing techniques improves automatic detection performance. |
Descripción: | Presentado en International Conference, ICPRAM 2012 Vilamoura, Algarve, Portugal, February 6-8, 2012. |
Citación: | Di Martino, M., Decia, F., Molinelli, J., Fernández, A. "A Novel Framework for Nontechnical Losses Detection in Electricity Companies". Publicado en: Latorre Carmona, P., Sánchez, J., Fred, A. (eds) Pattern Recognition - Applications and Methods. Advances in Intelligent Systems and Computing, vol 204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36530-0_9 |
Departamento académico: | Procesamiento de Señales |
Grupo de investigación: | Tratamiento de Imágenes |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
DMMF2013.pdf | 357,26 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons