english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/47022 Cómo citar
Título: Electricity demand forecasting : the uruguayan case
Autor: Castrillejo, Andrés
Cugliari, Jairo
Massa, Fernando
Ramirez, Ignancio
Tipo: Ponencia
Fecha de publicación: 2018
Resumen: The development of new electricity generation technologies has given new opportunities to developing economies. These economies are often highly dependent on fossil sources and so on the price of petrol. Uruguay has finished the transformation of its energetic mix, presenting today a very large participation of renewable sources among its production mix. This rapid change has demanded new mathematical and computing methods for the administration and monitoring of the system load. In this work we present enercast, a R package that contains prediction models that can be used by the network operator. The prediction models are divided in two groups, exogenous and endogenous models, that respectively uses external covariates or not. Each model is used to produce daily prediction which are then combined using a sequential aggregation algorithm. We show by numerical experiments the appropriateness of our end-to-end procedure applied to real data from the Uruguayan electrical system.
Descripción: Presentado y publicado en Renewable Energy: Forecasting and Risk Management. FRM 2017. Springer Proceedings in Mathematics
Statistics, vol 254. Springer
Citación: Castrillejo, A., Cugliari, J., Massa, F., Ramirez, I. "Electricity demand forecasting : the uruguayan case. Publicado en:: Drobinski, P., Mougeot, M., Picard, D., Plougonven, R., Tankov, P. (eds) Renewable Energy: Forecasting and Risk Management. FRM 2017. Springer Proceedings in Mathematics
Statistics, vol 254. Springer, Cham. https://doi.org/10.1007/978-3-319-99052-1_6
Departamento académico: Procesamiento de Señales
Grupo de investigación: Tratamiento de Imágenes
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
CCMR2018.pdf5,12 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons