english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/47011 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorEgger, Helenes
dc.contributor.authorCalderbank, Robertes
dc.contributor.authorFiori, Marceloes
dc.contributor.authorSprechmann, Pabloes
dc.contributor.authorCarpenter, Kimberlyes
dc.contributor.authorSapiro, Guillermoes
dc.date.accessioned2024-11-13T19:24:40Z-
dc.date.available2024-11-13T19:24:40Z-
dc.date.issued2014es
dc.date.submitted20241113es
dc.identifier.citationCarpenter, K, Sprechmann, P, Fiori, M, y otros. "Questionnaire simplification for fast risk analysis of children's mental health," Publicado en: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4-9, may, 2014, pp. 6009-6013, doi: 10.1109/ICASSP.2014.6854757.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/47011-
dc.descriptionPresentado y publicado en 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 2014es
dc.description.abstractEarly detection and treatment of psychiatric disorders on children has shown significant impact in their subsequent development and quality of life. The assessment of psychopathology in childhood is commonly carried out by performing long comprehensive interviews such as the widely used Preschool Age Psychiatric Assessment (PAPA). Unfortunately, the time required to complete a full interview is too long to apply it at the scale of the actual population at risk, and most of the population goes undiagnosed or is diagnosed significantly later than desired. In this work, we aim to learn from unique and very rich previously collected PAPA examples the inter-correlations between different questions in order to provide a reliable risk analysis in the form of a much shorter interview. This helps to put such important risk analysis at the hands of regular practitioners, including teachers and family doctors. We use for this purpose the alternating decision trees algorithm, which combines decision trees with boosting to produce small and interpretable decision rules. Rather than a binary prediction, the algorithm provides a measure of confidence in the classification outcome. This is highly desirable from a clinical perspective, where it is preferable to abstain a decision on the low-confidence cases and recommend further screening. In order to prevent over-fitting, we propose to use network inference analysis to predefine a set of candidate question with consistent high correlation with the diagnosis. We report encouraging results with high levels of prediction using two independently collected datasets. The length and accuracy of the developed method suggests that it could be a valuable tool for preliminary evaluation in everyday care.es
dc.languageenes
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectChildhood developmentes
dc.subjectBoostinges
dc.subjectMental healthes
dc.subjectNetwork analysises
dc.titleQuestionnaire simplification for fast risk analysis of childrens mental healthes
dc.typePonenciaes
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
udelar.academic.departmentProcesamiento de Señaleses
udelar.investigation.groupTratamiento de Imágeneses
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
CSFCES14.pdf626,7 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons