english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/46996 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorTepper, Marianoes
dc.contributor.authorMusé, Pabloes
dc.contributor.authorAlmansa, Andréses
dc.date.accessioned2024-11-13T19:24:34Z-
dc.date.available2024-11-13T19:24:34Z-
dc.date.issued2011es
dc.date.submitted20241113es
dc.identifier.citationTepper, M, Musé, P, Almansa, A. "A truly unsupervised, non-parametric clustering method" Seminario de Probabilidad y Estadística, Montevideo, Uruguay, 2011.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/46996-
dc.description.abstractHuman perception is extremely adapted to group similar visual objects. The Gestalt school studied the perceptual organization and identified a set of rules that govern human perception. One of the earlier and most powerful qualities, or gestalts, is proximity, which states that spatial or temporal proximity of elements may induce to perceive them as a single group. From an algorithmic point of view, the main problem with the gestalt rules is their qualitative nature. Our goal is to design a clustering method that can be considered a quantitative assessment of the proximity gestalt. We show that this can be achieved by analyzing the inter-point distances of the Minimum Spanning Tree, a structure that is closely related to human perception. We present a method that relies on the sole characterization of non-clustered data, thus being capable of detecting non-clustered data as such, and to detect clusters of arbitrary shape. The method is fully unsupervised in the sense that the user input only relates to the nature of the problem to be treated, and not the clustering algorithm itself. Even the number of clusters does not need to be previously chosen. Strictly speaking the method involves one single parameter that controls the degree of reliability of the detected clusters. However, the algorithm can be considered parameter-free, as the result is not sensitive to its value.es
dc.languageenes
dc.publisherUdelar. FCes
dc.relation.ispartofSeminario de Probabilidad y Estadística 2011es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.titleA truly unsupervised, non-parametric clustering methodes
dc.typePonenciaes
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
udelar.academic.departmentProcesamiento de Señaleses
udelar.investigation.groupTratamiento de Imágeneses
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons