Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/46461
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Sagasti, Amaia | - |
dc.contributor.author | Rocamora, Martín | - |
dc.contributor.author | Font, Frederic | - |
dc.date.accessioned | 2024-10-23T14:39:52Z | - |
dc.date.available | 2024-10-23T14:39:52Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Sagasti, A., Rocamora, M. y Font, F. Prediction of pleasantness and eventfulness perceptual sound qualities in urban soundscapes [en línea]. EN: Proceedings of the 9th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE 2024), Tokyo, Japan, 23-25 oct. 2024, pp. 131-135. | es |
dc.identifier.isbn | 978-952-03-3171-9 | - |
dc.identifier.uri | https://dcase.community/workshop2024/proceedings | - |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/46461 | - |
dc.description.abstract | The acoustic environment induces emotions in human listeners. To describe such emotions, ISO-12913 defines pleasantness and eventfulness as orthogonal properties that characterise urban soundscapes. In this paper, we study different approaches for automatically estimating these two perceptual sound qualities. We emphasize the comparison of three sets of audio features: a first set from the acoustic and psychoacoustic domain, suggested in ISO-12913; a second set of features from the machine listening domain based on traditional signal processing algorithms; and a third set consisting of audio embeddings generated with a pre-trained audio-language deep-learning model. Each feature set is tested on its own and in combination with ground-truth labels about the sound sources present in the recordings to determine if this additional information improves the prediction accuracy. Our findings indicate that the deep-learning representation yields slightly better performance than the other feature sets when predicting pleasantness, but all of them yield similar performance when predicting eventfulness. Nevertheless, deep-learning embeddings present other advantages, such as faster calculation times and greater robustness against changes in sensor calibration, making them more effective for real-time acoustic monitoring. Furthermore, we observe a clear correlation between the sound sources that are present in the urban soundscape and its induced emotions, specially regarding the sensation of pleasantness. Models like the ones proposed in this paper allow for an assessment of the acoustic environment that goes beyond a characterisation solely based on sound pressure level measurements and could be integrated into current acoustic monitoring solutions to enhance the understanding from the perspective of the induced emotions. | es |
dc.description.sponsorship | Este trabajo ha sido financiado por el proyecto “Soundlights: Distributed Open Sensors Network and Citizen Science for the Collective Management of the City’s Sound Environments” (9382417), por BIT Habitat (Ajuntament de Barcelona) en el marco del programa La Ciutat Proactiva, y por la IA y Música: Catedra en Inteligencia Artificial y Música (TSI-100929-2023-1) por la Secretaría de Estado de Digitalización e Inteligencia Artificial y NextGenerationEU bajo el programa Cátedras ENIA 2022. | es |
dc.format.extent | 5 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.publisher | DCASE | es |
dc.relation.ispartof | Proceedings of the 9th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE 2024), Tokyo, Japan, 23-25 oct. 2024, pp. 131-135. | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Urban soundscapes | es |
dc.subject | Acoustic monitoring | es |
dc.subject | Emotions | es |
dc.subject | Machine-learning | es |
dc.subject | Perception | es |
dc.title | Prediction of pleasantness and eventfulness perceptual sound qualities in urban soundscapes. | es |
dc.type | Ponencia | es |
dc.contributor.filiacion | Sagasti Amaia, Music Technology Group, Universitat Pompeu Fabra. | - |
dc.contributor.filiacion | Rocamora Martín, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Font Frederic, Music Technology Group, Universitat Pompeu Fabra. | - |
dc.rights.licence | Licencia Creative Commons Atribución (CC - By 4.0) | es |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
SMF24.pdf | Versión publicada | 497,6 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons